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Fig. 1. 2D animation (left) and visualization (center) of reconstructed traffic in virtual San Francisco with 3D vehicle flows (right) using our method.

Rapid urbanization and increasing traffic have caused severe social, eco-
nomic, and environmental problems in metropolitan areas worldwide. Traf-
fic reconstruction and visualization using existing traffic data can provide
novel tools for vehicle navigation and routing, congestion analysis, and
traffic management. While traditional data collection methods are becom-
ing increasingly common (e.g. using in-road sensors), GPS devices are also
becoming ubiquitous. In this paper, we address the problem of traffic recon-
struction, visualization, and animation using mobile vehicle data (i.e. GPS
traces). We first conduct city-scale traffic reconstruction using statistical
learning on mobile vehicle data for traffic animation and visualization, and
then dynamically complete missing data using metamodel-based simulation
optimization in areas of insufficient data coverage. We evaluate our approach
quantitatively and qualitatively, and demonstrate our results with 2D visual-
ization of citywide traffic, as well as 2D and 3D animation of reconstructed
traffic in virtual environments.
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1 INTRODUCTION
Rapid urbanization and increasing traffic have a serious social, eco-
nomic, and environmental impact on metropolitan areas worldwide.
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The ever-present congestion restricts the accessibility of a city and
affects the mobility of its inhabitants [Schrank et al. 2015]. Many
efforts have been invested in digitalizing and visualizing urban en-
vironments, e.g. software tools like Google Maps and Virtual Earth.
As new technologies like VR systems [MIT 2011; TAC 2017; Wang
et al. 2005] and self-driving cars emerge, there is an increasing de-
mand to incorporate realistic traffic flows into virtualized cities. The
potential applications range from virtual tourism, networked gam-
ing, navigation services, urban design, to training of autonomous
vehicles. The ability to reconstruct city-scale traffic from mobile
sensor data can enable the visualization and animation of realistic
real-world traffic conditions thus contributes to those applications.
Traditional traffic data collection methods (e.g. in-road sensors

like loop detectors and video cameras) are very costly; new and
cheaper data sources such as GPS devices are becoming increasingly
ubiquitous. Especially, taxicabs and shared ride services (e.g. Uber
and Lyft) are systematically equipping their car fleets with these
devices. As a result, GPS traces are part of the most promising data
sources to estimate citywide traffic conditions attributing to its
broad coverage1. However, besides the inherent noise, GPS data
usually contains a low-sampling rate; i.e., the time lapse between
two consecutive sampled points is large (e.g. >30 seconds). The result
could be multiple paths for connecting two consecutive points in an
urban environment. In addition, GPS data exhibits spatial-temporal
sparsity; i.e., the data is scarce in certain areas (e.g. suburbs) and
time periods (e.g. early-morning hours), which makes city-scale
estimation very difficult.

While it is already challenging to reconstruct traffic conditions in
areas where GPS data is available, in order to reconstruct citywide
traffic, data completion is needed in areas without GPS data. In
theory, the local traffic in these areas can be approximated using
microscopic traffic simulation, which capture interactions among
individual vehicles. However, it is critical to ensure consistency
of traffic flows on the boundary of areas without GPS data and

1Another ubiquitous data source is the cellular network. However, it is usually inade-
quate for estimating traffic states alone [Wu et al. 2015].
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areas with GPS data. This indicates that microscopic traffic simu-
lations must be dynamically tuned to ensure matching flows with
the reconstructed traffic in regions with heavy and complete GPS
coverage.
Reconstructing city-scale traffic dynamics using mobile vehicle

data (i.e. GPS traces) presents a number of challenges: (1) process-
ing the available data, (2) coping with insufficient data coverage,
and (3) reconstructing local traffic flows that are consistent with
the global traffic dynamics at large temporal and spatial scales. In
order to address these issues, we propose a systematic approach
that takes a GIS map (processed using [Wilkie et al. 2012]) and GPS
data (collected from taxicabs in San Francisco in 2008 [Piorkowski
et al. 2009]) as input, and reconstruct the city-scale traffic using
a two-phase process. In the first phase of our system, we recon-
struct and progressively refine flow conditions on individual road
segments from the sparse GPS data using statistical learning com-
bined with optimization, map-matching [Quddus and Washington
2015], and travel-time estimation [Li et al. 2017] techniques. In the
second phase of our system, we use a metamodel-based simulation
optimization to efficiently refine the reconstructed results from the
previous phase, along with a microscopic simulator [Krajzewicz
et al. 2012] to dynamically interpolate missing data. To ensure that
the reconstructed traffic is correct, we fine tune the simulation with
respect to city-wide boundary (traffic) constraints and the recon-
structed traffic flow from the first phase; this objective is enforced
through an error approximation of the traffic flow computed by our
novel metamodel-based formulation. In summary, we address the
problem of learning-based traffic animation and visualization using
GPS data. Our contributions are as follows:

• City-scale traffic reconstruction using statistical learning on
GPS data for traffic animation and visualization;
• Dynamic data completion using metamodel-based simulation
optimization in areas of insufficient data coverage.

The rest of the paper is structured as follows. We survey related
work in traffic reconstruction and simulation in Section 2. A general
overview is provided in Section 3.We detail our approach in Sections
4 and 5. We present results for reconstruction and simulation, as
well as system validation and application demonstration in Section 6.
Finally, we conclude and discuss future work in Section 7.

2 RELATED WORK
Modeling of urban environments has received considerable atten-
tion in recent years. Many systems have been developed to describe
a variety of their aspects (layout, vehicle traffic, pedestrian motion,
etc.) [Garcia-Dorado et al. 2017; Li et al. 2016; Musialski et al. 2013;
Thomas and Donikian 2000; Willemsen et al. 2006]. In terms of ve-
hicle motion, a number of driving simulators and vehicle behavioral
models have been proposed [MIT 2011; TAC 2017; Wang et al. 2005],
with several designed for virtual reality systems [Bayarri et al. 1996;
Kuhl et al. 1995; Wang et al. 2005]. Considerable advances have also
been made in the development of increasingly open-world video
games (e.g. Grand Theft Auto, Burnout Paradise, and Watch Dogs)
and visualization of traffic [Andrienko and Andrienko 2006; Ferreira
et al. 2013; Wang et al. 2014].

Traffic simulation has received renewed interest in the past decade,
for example, with the introduced concept of “virtualized traffic” [Se-
wall et al. 2011a; van den Berg et al. 2009], and the increasing efforts
towards modeling of realistic traffic flows [Wilkie et al. 2015]. Some
recent works include an extension of macroscopic models to gen-
erate detailed animations of traffic flows [Sewall et al. 2010], and
their integration with existing microscopic models to produce traffic
animation on urban road networks [Sewall et al. 2011b]. [Shen and
Jin 2012] and [Mao et al. 2015] have improved existing microscopic
models to produce believable traffic animations. Techniques from
texture synthesis have been adopted to enhance the visual quality
of traffic flows [Chao et al. 2017]; characterization of heterogeneous
vehicle types [Lin et al. 2016] and driver personalities [Lu et al.
2014] have been explored. Real-world data has also been used to
calibrate simulated traffic flows: recent works, including [van den
Berg et al. 2009], [Sewall et al. 2011a], and [Wilkie et al. 2013], all
have explored in-road sensors to reconstruct the traffic flow; [Chao
et al. 2013] acquired individual vehicle characteristics from video
cameras; [Bi et al. 2016] adopted a data-driven method to enrich
the lane-changing behaviors of traffic simulations. Finally, [Garcia-
Dorado et al. 2014] provided users with the flexibility to assign
desired vehicular behaviors to a road network.
Data-driven modeling has been studied by several recent works

for crowds [Charalambous and Chrysanthou 2014; Ju et al. 2010;
Lee et al. 2007; Lerner et al. 2007], which like traffic, are often
modeled using multi-agent simulation. There are however two main
distinctions to be noted. The first is the problem of scale. While data-
driven crowds are often limited to a few hundreds of individuals, city-
scale traffic reconstruction concerns tens of thousands of vehicles.
The second distinction is the nature of the data: in data-driven
crowds, at least several positions and joint angles are recorded per
second for each individual, while mobile traffic data is often very
sparse and individual trajectories are not known and cannot be
assumed.
Traffic reconstruction has drawn much attention in the field of

traffic engineering [Kachroo and Sastry 2016]. In order to achieve
high accuracy, multiple data sources and traffic simulation models
have been investigated [Li et al. 2014; Perttunen et al. 2015; Work
et al. 2010]. While significant results have been achieved, these
methods along with other projects such as Mobile Century [Herrera
et al. 2010] are largely restricted to highway segments with lengths
of a few kilometers. In order to expand reconstructions to arterial
roads and surface streets, recent studies [Castro et al. 2012; Kong et al.
2013; Zhang et al. 2013] have adopted GPS data, which presents a
number of challenges. Primarily, due to the uncertainty and sparsity
of the data, several processing steps are required and are usually
conducted in tandem.

The first step in the pipeline ismap-matching, which addresses off-
the-road GPS points and infers the truly traversed path connecting
them. One of the commonly used techniques for connecting low-
sampling-rate points is to take the shortest-distance path [Hunter
et al. 2014; Quddus and Washington 2015]. Unfortunately, this cri-
terion produces biased results in congested environments where
the shortest-distance path is no longer the shortest travel-time path,
which drivers would prefer [Hunter 2014; Li et al. 2017; Tang et al.
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2016]. However, finding the shortest travel-time path requires accu-
rate estimations of traffic conditions, which are difficult to obtain.
The second step, travel-time estimation, tries to distribute the ag-
gregate travel time to individual road segments of a map-matched
path. To list a few examples, [Hellinga et al. 2008] developed an an-
alytical solution based on empirical observations of traffic patterns;
[Rahmani et al. 2015] took a non-parametric approach and adopt a
kernel-based estimator; other approaches are based on probabilistic
frameworks [Herring et al. 2010; Hunter 2014]. While encouraging
improvements have been made, these methods suffer from the in-
herent limitations of map-matching under the sequential process.
Especially, in a congested network, the aggregate travel time is
likely to be assigned to a wrong set of road segments given the
shortest-distance criterion. The main difference between our travel-
time estimation technique and previous works such as [Hunter 2014;
Li et al. 2017; Tang et al. 2016] is that we take an iterative rather
than a sequential perspective so that the errors generated during
each step get gradually attenuated.

Our work differs from the previous efforts in several regards. First,
traffic flow reconstruction on arterial roads presents new challenges
over that on highways and major roads, where in-road sensors are
available. The simulation techniques used in recent works, such
as [van den Berg et al. 2009; Wilkie et al. 2013], depend on relatively
accurate data and certain macroscopic traffic assumptions. However,
GPS data is inherently noisy and the macroscopic traffic assump-
tions have been shown to break down on arterial roads [Kong et al.
2013]. Our framework addresses these issues by conducting statisti-
cal learning on mobile data and reconstructs traffic in regions which
have a rich data coverage. Second, while efficient and large-scale
traffic simulation techniques have been introduced [Sewall et al.
2011b, 2010], these techniques are not designed to ensure simula-
tion fidelity with respect to reconstructed traffic flows. Our system
dynamically completes the reconstruction in areas where mobile
data is insufficient or missing. This is achieved by using metamodel-
based optimization to satisfy city-wide boundary constraints and to
minimize the error differences to the reconstructed traffic.

3 OVERVIEW
In this section, we first give an overview of our approach and then
define the notations used in this paper.

3.1 System Framework
In order to achieve city-scale traffic visualization and animation,
our system consists of two main phases: (1) an initial traffic re-
construction phase (center-left column in Figure 2, and Section 4)
that estimates initial traffic flows on all road segments in the target
area, and (2) a dynamic data completion phase (center-right column
in Figure 2, and Section 5) that yields a dynamic and much more
accurate reconstructed traffic efficiently at the city scale.
For the Initial Traffic Reconstruction (Section 4) phase, one of the

main objectives is to reconstruct road-segment flows from the input
data. As mentioned before, this problem presents two challenges,
which we will address in order.

The first one is the sparseness of GPS data, where consecutive
data-points are on average 60 seconds apart. To cope with this
issue, we embed map-matching [Quddus and Washington 2015] and

travel-time estimation [Li et al. 2017] into an iterative process (top
and bottom boxes, center-left column in Figure 2, and Section 4.2),
where the output of one is treated as the input of the other and
vice-versa. Overall, this process progressively refines an estimation
of travel times on road segments until convergence. This iterative
process is initialized with a starting estimation obtained through a
“naïve” optimization (left box, center-left column in Figure 2, and
Section 4.1). After the iterative process, we obtain flows for all road
segments in areas that have GPS data coverage.

The second challenge is the uneven coverage of GPS data. In order
to reconstruct traffic flows in areas with little to no data, we perform
a bilevel optimization (right box, center-left column in Figure 2, and
Section 4.3). The main principle of this phase is to use existing data
(either outdated traffic data or estimated results) that is complete
but not very precise, and update it using new information (i.e. the
reconstruction from the previous phase). As a result of this phase,
we obtain flows for road segments in areas that have no GPS data
coverage. Note however that in these areas, flows are only accurate
at a large scale but not at the scale of individual road segments.
For the Dynamic Data Completion (Section 5) phase, we have

obtained estimated flows from the previous phase that are only ac-
curate at a large scale, but not necessarily at the road-segment scale:
road-segment flows are accurate in areas with GPS data coverage,
but not in areas without. Additionally, this reconstruction is static
and does not account for interactions among individual cars, which
are pronounced in arterial roads and have a profound impact on
the overall traffic dynamics at the city scale. In order to address
the missing data issue and unaccounted local interactions, we use a
microscopic traffic simulator (i.e. SUMO [Krajzewicz et al. 2012]).

A simulation given by such an algorithm in a given area that does
not have GPS data coverage might not however, respect boundary
conditions and previously reconstructed traffic in data-rich regions
“out of the box”. To address these issues, we allow the algorithm
to change the “turning ratios” at intersections (i.e. the parameters
deciding how likely a car is to take a given exit when arriving at a
traffic intersection). Changing these turning ratios effectively alters
the simulated flows both for the road segments and for the overall
traffic. The objective is then to change these turning ratios such that
flows simulated at the boundaries correspond to the reconstructed
traffic from GPS data. The simulated road-segment flows are then
coherent with the overall traffic (thereby also correcting what has
been inferred from existing data used in the bilevel optimization
substep of traffic reconstruction).
In this form, the optimization of turning ratios (bottom and top

boxes, center-right column in Figure 2, and Section 5.1) would be
very costly because of the need to use the microscopic simulator
in the cost function. Consequently, we accelerate this optimization
step by approximating the cost function with a metamodel [Osorio
et al. 2015] (top box, center-right column in Figure 2), thus making
this optimization problem more tractable. Finally, we initialize the
optimization scheme randomly (left box, center-right column in
Figure 2, and Section 5.2), and use the resulting turning ratios of
the optimization in the simulator to get the final results (right box,
center-right column in Figure 2, and Section 5.2).
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Fig. 2. The systematic view of our framework. Trip records are optional as they can be inferred from GPS traces on a digital map.

3.2 Notations
A road network is represented as a directed graph G = (V ,E), in
which the nodesV and edges E respectively represent intersections
(or terminal points), and road segments. Additionally, we denote a
path on the road network as a set of road segments k ∈ K where
K is the set of all paths.
Geographically, a city can be divided into many traffic analysis

zones (TAZs) based on socio-economic data. The centroids of these
TAZs are considered as traffic-flow origins and destinations. The
sets of origins and destinations are respectively denoted as O ⊆ V
and D ⊆ V . The traffic flow is considered to take place between
origin-destination pairs (OD pairs), and the average flow from o ∈ O
to d ∈ D during a certain time interval is noted uod (in accordance
with traffic engineering literature, this flow is the average number
of vehicles). With Kod as the set of paths connecting o and d (and
K the set of all paths), the flow on path k ∈ Kod is u (k ). The flow
inside an OD pair is a summation of flows on all paths in this pair:

uod =
∑

k ∈Kod

u (k ), u (k ) ≥ 0,∀o ∈ O,d ∈ D . (1)

The flow f (e ) on a road segment e ∈ E, is defined as the sum of all
path flows traversing e:

f (e ) =
∑

(o,d )∈O×D

∑
k ∈Kod

δke u (k ), (2)

where δke is 1 if path k contains road e , and 0 otherwise. This means
that ∀e ∈ E,∀k ∈ Kod , if e ∈ k , then e contributes a certain portion
pe,od of uod . Thus, by arranging the flows of all OD pairs in a
vector u = [uod ]⊺

(o,d )∈O×D , and the contributed flow portions of a
road segment e as Pe = [pe,od ](o,d )∈O×D , we have the following
relation:

f (e ) = Peu. (3)

With all road-segment flows in a network fE = [f (e )]⊺e ∈E and the
portions of all road segments PE = [Pe ]⊺e ∈E , we obtain the general
relation between flows in road segments and OD pairs:

fE = PEu, (4)

with PE termed assignment matrix.
Other notations used in this work are as follows:

• S denotes the GPS data, then ∀s ∈ S contains a longitude, a
latitude, and a timestamp; additionally, a pair of successive
GPS data points can be noted (s1,s2) ∈ Sp , where Sp would
then be the set of all pairs of consecutive GPS data points;
finally, Ks1,s2 is the set of all paths connecting s1 to s2.
• t denotes travel time; for instance, t (e ) is the travel time on a
road segment e ∈ E, t (k ) =

∑
e ∈k t (e ) is the travel time on a

path k ∈ K , and t (s1,s2) is the travel time between a pair of
two consecutive GPS data points (s1,s2) ∈ Sp given by their
timestamps.

Next, we describe the main phases of our framework in detail.

4 CITY-SCALE TRAFFIC RECONSTRUCTION
There are three steps in the initial traffic reconstruction phase: (1)
initial estimation of travel times on road segments, (2) iterative
refinement of these travel times, and (3) bilevel optimization to fill
data-lacking areas.

4.1 Initial Estimation
For the initial estimation of travel times, we use Wardrop’s princi-
ple [Wardrop 1952], which states that traffic will arrange itself in
congested networks such that no vehicle can reduce its travel cost
by switching routes. This state is termed user equilibrium and is
a result of every user non-collaboratively attempting to minimize
their travel times. While the actual traffic may not necessarily form
a user equilibrium, it serves as an approximation to real-world traf-
fic [Hato et al. 1999] and motivates the generation of the constraints
in our optimization.
Following this principle, for a pair of two consecutive GPS data

points (s1,s2) ∈ Sp , the travel time between them t (s1,t2) should be
the minimum travel time on all paths connecting these two points:
∀k ∈ Ks1,s2 ,t (k ) ≥ t (s1,s2). Thus, travel times on road segments
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should satisfy the following “Wardrop” constraintsW :

W = {t (k ) ≥ t (s1,s2)}∀(s1,s2 )∈Sp , ∀k ∈Ks1,s2
. (5)

Additionally, we bound travel times on road segments e ∈ E by
tmin (e ) and tmax (e ), respectively representing free-flow travel time
(at 120% of the road segment’s speed limit2) and travel time at jam
density (at 0.5m.s−1).
In order to derive a solution with respect to typical traffic pat-

terns, we pose a regularization term, R, on tE = [t (e )]⊺e ∈E to
model the correlation in traffic patterns of road segments in close
proximity [Sheffi 1985; Wang et al. 2016; Zheng et al. 2011]. R is
formed as a 2-dimensional fused Lasso penalty [Tibshirani et al.
2005] in which each row represents a pair of road segments con-
necting at a node. The entries corresponding to the pair of road
segments are set to 1 and -1, accordingly. As an example, the R
of a three-way intersection with road segments {e1,e2,e3} takes
the form: R = {[1,1,0]⊺ ,[−1,0,1]⊺ ,[0,−1,−1]⊺ }. We set up R by
enumerating all pairs of road segments at each v ∈ V . As a result,
R ∈ Rm×n , wherem =

∑
v ∈V

(deд (v )
2
)
, n = |E |, and deд(v ) is the

total degree of v . The initial estimation t̄E of travel times is then as
follows:

t̄E = argmin
tE

∥RtE ∥1,

subject to W , tE,min ≤ t̄E ≤ tE,max .
(6)

4.2 Iterative Estimation
We refine t̄E with an iterative process that alternates between map-
matching and travel-time estimation. This design is based on the
observation that many works take a sequential perspective [Hunter
2014; Kong et al. 2013; Li et al. 2017; Zhang et al. 2013]. As a conse-
quence, the bias generated during map-matching (especially under
the shortest-distance criterion) will get cascaded into travel-time
estimation and affect the overall estimation accuracy. By resorting
to an iterative process, as newly estimated travel times get more
accurate, so does the map-matching, and vice-versa.

4.2.1 Map Matching. We adopt a simple strategy to compute
the “true” path k̄s1,s2 between a pair of successive GPS data points
(s1,s2) ∈ Sp . Assuming Q1 and Q2 to denote the sets of candidate
positions on the map for s1 and s2, respectively. This step returns
N = {k̄s1,s2 }∀(s1,s2 )∈Sp , where:

k̄s1,s2 = argmin
k̄ ∈K̄s1,s2

∥t (s1,s2) − t̄ (k̄ )∥,

with K̄s1,s2 =



argmin
k ∈Kq1,q2

t̄ (k )

∀(q1,q2 )∈Q1×Q2

.

(7)

4.2.2 Travel Time Estimation. Given the paths N assigned to
each pair of successive GPS data points by the map-matching step,
we now need to estimate a more accurate set of travel times t̄E on
individual road segments.
We model the travel times on road segments to each follow a

probability distribution t̄ (e ) ∼ πe ,∀e ∈ E, where the distributions
2We set the threshold to be 120% due to two reasons: 1) it regulated the range of traffic
flows; 2) by examining map-matched GPS data, traffic flow velocity that exceeds 120%
is rare.

are parameterized by θ = {θe }e ∈E . Thus, we proceed to learn θ
through maximum likelihood estimation (MLE):

maximize
θ

L (θ |N ) =
∑

∀(s1,s2 )∈Sp

log π (t (s1,s2) |k̄s1,s2 ;θ ), (8)

where L is the likelihood function. Following the methodology
from [Hofleitner et al. 2012], we assume that (1) the travel time on a
road segment can bemodeled by a univariate distribution, and (2) the
travel-time distributions on road segments are pairwise independent.
With these assumptions, we solve Equation 8 using the expectation
maximization (EM) algorithm, for which the maximization problem
from the M-step is for each road segment as follows:

maximize
θe

∑
ω ∈Ω

wω (e ) log πe (tω (e );θe ), (9)

where πe , θe , Ω, tω , andwω are as follows:

• πe , θe : As in [Hunter 2014], we use the Gamma distribution
Γ as π , because of its positive domain and long-tail-observation
robustness properties. Thus, we have θe = (αe ,βe ) where αe is the
shape and βe is the scale. These quantities are also directly linked
to the mean and standard deviation.

• Ω: As a road segment can be part of paths that link many
different pairs of successive GPS data points, samples for each of
these pairs must be included in Equation 9. Additionally, for more
accurate estimations, we compute 100 samples for each pair. Thus,
Ω = {(s1,s2,i )}∀(s1,s2 )∈Sp ,∀i ∈[[1,100]].

• tω : With the previous choice for πe , θe and Ω, tω is computed
as follows [Hunter 2014]:

∀ω ∈ Ω, ∀e ∈ k̄s1,s2 , tω (e ) = t (s1,s2)
Aω (e )∑

e ∈E Aω (e )

with Aω (e ) ∼ Γ(αe ,
βe

t (s1,s2)
),

(10)

•wω : A weightwω (e ) is then computed as the distance between
tω (e ) and Aω (e ).

After solving Equation 9, a new estimation of t̄E is computed,
where for each road segment e ∈ E, t̄ (e ) is computed as the mean
of πe . From here, the iterative estimation loops back to the map-
matching step. The entire process stops after 10 iterations (deter-
mined empirically), with the refined t̄E as output.

4.3 Bilevel Optimization
The previous steps allowed us to have the estimated travel times
t̄E on road segments with GPS data coverage. Then the objective
of this step is to compute the flows on all road segments (including
those without data coverage).
First, we convert t̄E = [t̄ (e )]⊺e ∈E to f̄E = [ f̄ (e )]⊺e ∈E using the

relation from Appendix A.1. Then, we derive the target OD pairs
ū based on the ratio of estimated flows and loop-detector measure-
ments on the same road segment [Yang et al. 2017]. By having f̄E
from the previous steps, we can compute flows on all road segments
f̂E and the corresponding flows between OD pairs û through the
following minimization [Cascetta and Nguyen 1988]:
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minimize
û

F1 (û, ū) + F2 (f̂E , f̄E )

subject to f̂E =M (û), û ≥ 0,
(11)

where F1 and F2 are generalized distance functions.M is the as-
signment map which determines PE . IfM follows Wardrop’s princi-
ple [Wardrop 1952], then Equation 11 becomes a bilevel optimization
problem [Yang et al. 1992]: the upper level minimizes the distances
of estimated OD pairs and traffic flows to their corresponding mea-
surements, while the lower level satisfies the user equilibrium. For
F1 and F2, we select the generalized least squares (GLS) estima-
tor [Bera and Rao 2011], as it permits different weighting schemes
of ū and f̄E . We further assume that ū and f̄E are results from the
following stochastic system of equations:

ū = û + ϵ1, f̄E = f̂E + ϵ2. (12)

Then, Equation 11 can be explicitly written as:

minimize
û

η(ū − û)⊺U −1 (ū − û)

+ (1 − η) (f̄E − f̂E )⊺V −1 (f̄E − f̂E ),

subject to f̂E =M (û), û ≥ 0, f̂E ≥ 0, 0 ≤ η ≤ 1,

(13)

where U and V are variance-covariance matrices of ϵ1 and ϵ2, re-
spectively; E(ϵ1) = 0 and E(ϵ2) = 0 are derived from experiments
in [Cascetta and Nguyen 1988]; η ∈ [0,1] is the weighting factor.
When η = 1, f̄E is ignored, and the estimation is purely based on ū;
when η = 0, the estimation is solely based on f̄E . Equation 13 can be
solved iteratively: in the upper level we solve the GLS estimator us-
ing quadratic programming; in the lower level we approximate user
equilibrium using the one-shot function within SUMO [Krajzewicz
et al. 2012]. As a result of this procedure, we can use the newly
computed f̂E on road segments where GPS data is unavailable.

5 DYNAMIC DATA COMPLETION
In order to generate accurate dynamic traffic simulations, we use
a microscopic simulation algorithm. However, to ensure that the
simulation of any given area respects flows at the boundaries and
previously reconstructed traffic, we allow the algorithm to alter the
values of the turning ratios at intersections (where a car will turn
when arriving at an intersection). We choose the turning ratios as
optimization variables because: 1) turning ratios implicitly encode
several aspects, e.g. traffic light logic, 2) driving behaviors, such as
lane changing, are limited at intersections, and 3) detailed road infor-
mation (e.g. intersection logic) is difficult to obtain. Consequently,
in most microscopic traffic simulators, specifying turning ratios is
one of the main mechanisms to start a simulation. Furthermore, the
split flows can be used to form a metamodel and compute estimation
errors from the previous reconstructed results. Lastly, our algorithm
explained in this section can cope with multivariable optimization
if information of other simulation parameters is provided.

We denote the vector of all turning ratios by x = [xv,e ]∀e ∈v,∀v ∈V ,
and name it as a decision point. In order to systematically derive a
decision point x∗ in a simulation region that not only meets OD de-
mands but also agrees with the previous estimated traffic conditions,
we rely on the following optimization task:

x∗ = argmin
x

F̄ (x; ρ) ≡ E[F (x; ρ)], (14)

where F̄ is the objective function, and F is a stochastic network
performance measure. The distribution of F depends on the deci-
sion point x and exogenous parameters ρ, which record a network
topology and road-segment metrics. Every simulation run with x
is a realization of F , which involves sampling many other distri-
butions that account for the stochastic nature of traffic (e.g. driver
differences). Assume we run r independent simulations with a given
x, the objective function then can be approximated as:

F̂ (x; ρ) =
1
r

r∑
i=1

Fi (x; ρ). (15)

However, using a simulation algorithm in an optimization context
can be very costly. This motivates us to adopt the metamodel-based
simulation optimization approach.

5.1 Metamodel-Based Simulation Optimization
A metamodel simplifies simulation optimization, as it is typically
a deterministic function rather than a stochastic simulation, with
much lower computational complexity than the objective function.
Therefore, one way to circumvent the issues of using a microscopic
traffic simulator in a simulation-optimization loop is to develop a de-
terministic metamodel to replace the stochastic simulation response.
The metamodel is usually less realistic in terms of the modeling
capability, but much cheaper to evaluate.

The most common metamodels are functionalmetamodels, which
are general-purpose functions and can be used to approximate ar-
bitrary objective functions. Often, they are results of a linear com-
bination of basis functions such as low-order polynomials, spline
models, and radial basis functions [Conn et al. 2009]. However, they
require large numbers of decision points to be fitted, since they
do not take the structure of an underlying problem into account.
This means that we need to run the simulator on many decision
points in order to fit a well-performing metamodel. This procedure
is expensive and to a certain degree defeats the purpose of using a
metamodel. Therefore, we use a metamodel that contains not only a
functional component but also a physical component which encodes
the underlying problem to achieve high efficiency.
We build this physical component based on the classical flow

conversion equation, also known as the traffic equation [Osorio 2010]:

f (e1) = γ (e1) +
∑
e2∈C

p (e1,e2) f (e2), ∀e1 ∈ C, (16)

where C represents the set of road segments in the simulation re-
gion, γ (e1) is the external flow injected into road segment e , and
p (e1,e2) is the transition probability from road segment e1 to road
segment e2. The exogenous parameters in Equation 16 are external
flows and transition probabilities. By having them, we can exe-
cute both the traffic equation and the traffic simulator to obtain
flow measurements on all road segments in a simulation region.
Denoting the subset of road segments with already estimated traf-
fic conditions from GPS data as A ∈ C, the estimated flows as
fE = { f (e )E }e ∈A , the propagated flows using the traffic equation
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as fT = { f (e )T }e ∈A , and the simulated flows using a traffic simu-
lator as fS = { f (e )S }e ∈A , we define the estimate of the objective
function derived from the simulator with one simulation run (r = 1
in Equation 15) as:

F̂ (x; ρ) = F (x; ρ) = ∥fS − fE ∥2. (17)
We define the approximation of the objective function derived from
the traffic equation as:

T (x; ρ) = ∥fT − fE ∥2. (18)
The metamodel is then constructed as a combination of the physical
component T and a functional component Φ:

M (x;α ,β ,ρ) = αT (x; ρ) + Φ(x; β ), (19)
where α (initially set to 0.5) and β (initially set to 1) are parameters
of the metamodel. The functional component, Φ, is chosen to be a
quadratic polynomial [Osorio and Bierlaire 2013]:

Φ(x; β ) = β1 +
|x |∑
i=1

βi+1xi +
|x |∑
i=1

βi+ |x |+1x
2
i , (20)

where |x| is the dimension of x; xi and βi are the ith elements of x
and β respectively. The quadratic polynomial provides Taylor-type
bounds, serves as a general term within a metamodel formulation,
and ensures global convergences [Conn et al. 2009]. In order to fit the
metamodel, we rely on the decision points that have been evaluated
using both the traffic equation and the traffic simulator. Denoting
X as the pool of the decision points, we can fit the metamodel (i.e.
compute α and β) by solving:

minimize
α ,β

|X |∑
i=1

(
wi
(
F̂ (xi ; ρ) −M (xi ;α ,β ,ρ

))2
+ (w0 · (α − 1))2 +

2 |x |+1∑
j=1

(w0 · βj )
2,

(21)

wherew0 is a fixed constant.wi is the weight associating each xi and
a new decision point xnew at each iteration during the optimization,
and is computed as wi = 1/(1 + ∥xnew − xi ∥2), representing the
inverse distance [Atkeson et al. 1997]. The first term in Equation 21
represents the weighted distance between simulated results and
estimated results. The remaining terms in Equation 21 guarantee
the least square matrix to have a full rank.

5.2 Algorithmic Steps
Following the framework proposed in [Conn et al. 2009] and its adap-
tation in [Osorio and Bierlaire 2013], we combine the metamodel
with the derivative-free trust-region algorithm to solve the opti-
mization problem from Equation 14, which can now be expressed
at any given iteration as:

xnew = argmin
x

M (x;α ,β ,ρ) = αT (x; ρ) + Φ(x; β ),

subject to ∥x∗ − x∥2 ≤ ∆, 0 ≤ x ≤ 1,∀x ∈ x,
(22)

where x∗ is the best decision point so far and ∆ is the current trust-
region radius.
The specific algorithmic steps are as follows:

• Step 1: Initialize X as containing 5 randomly sampled de-
cision points, evaluate each of them using both the traffic
equation and simulator, arbitrarily set x∗ as a any element
of X, and compute α and β (Equation 21).
• Step 2: Use Equation 22 to compute xnew .
• Step 3: Compute F̂ (xnew ; ρ) (simulator run). Compute the
relative improvement τ = F̂ (xnew )−F̂ (x∗ )

Mi (xnew )−Mi (x∗ )
. If τ ≥ 1e − 3,

accept xnew and set x∗ := xnew , otherwise reject xnew . In
any case, add xnew to X, and compute α and β (Equation 21).
• Step 4: If α and β have not changed much in step 3, i.e.
∥ (αnew ,βnew )−(αold ,βold ) ∥

∥ (αold ,βold ) ∥
≤ 0.1, then add a new randomly

sampled decision point to X, evaluate it using both the traffic
equation and simulator, and compute α and β (Equation 21).
• Step 5: Update the trust-region radius:

∆ :=




min{1.1 × ∆,100} if τ > 1e − 3,
max{0.9 × ∆,0.1} if τ ≤ 1e − 3 and

5 consecutive rejections of x,
∆ otherwise.

(23)

• Step 6: Exit the loop when the maximum number of allowed
simulator runs (20) is reached; otherwise go to step 2.

When the algorithm stops, x∗ can then be used to generate a simu-
lation, thus ending dynamic data completion.
In practice, instead of running this procedure on the whole net-

work, we adopt a decomposition approach and separate the network
into sub-networkswhich aremodeled independently. For these small
sub-networks, we consider nodes with no predecessors as artificial
origins and nodes without successors as artificial destinations (i.e. lo-
cations where vehicles respectively enter and exit the sub-network).
Additionally, observing that vehicles rarely navigate in loops, we
extract directed acyclic graphs (DAG) from these sub-networks. In
order to form a decision point, we consider the turning ratios of
nodes at the start of DAG edges that do not have accurate flow
estimations (and treat the rest of the turning ratios as constants).

6 RESULTS
In this section, we first present evaluations of Initial Traffic Recon-
struction and Dynamic Data Completion. Then, we demonstrate the
visualization and animation results using our method3.

6.1 Initial Traffic Reconstruction
We evaluate our approach using a real road network as the bench-
mark, a set of heuristic network travel times inferred from a real
GPS dataset, and a set of synthetic GPS traces generated as the
ground truth to test the performance.

We evaluate our method using the road network from downtown
San Francisco. For our experiments, we have established synthetic
datasets with GPS traces and precise network travel times. We
refer to a complete set of travel times on the road network as a
traffic condition. In total, we have generated 10 traffic conditions via
solving the system optimal (SO) model, and 24 traffic conditions via
the Timestamp model. For each condition, we have sampled 315,000
3The simulation resource can be found at http://gamma.cs.unc.edu/CityFlowRecon.
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Fig. 3. From left to right, the top diagrams show results generated using network travel times using the system optimal (SO) model, while the bottom diagrams
show corresponding results of network travel times using the Timestamp model. Left: The relative error rates (%) of various methods of aggregated travel time
across the road network. Center: The relative improvements (%) of travel times of all road segments measured in MSE. Right: The relative improvements (%) of
map-matching accuracy measured using successful identification rates of road segments. In summary, our technique achieves consistently more accurate
results over the state of the art, as the number of GPS traces used in recovering network travel times increases.

GPS traces for evaluation. We refer interested readers to Appendix
A.2 for details on generating this synthetic test data.

We compare our technique with two state-of-the-art methods,
namely Hunter et al. [2014] and Rahmani et al. [2015]. The results are
shown in Figure 3. We evaluate our technique using three metrics.
The first metric is the error rate of the aggregate travel time across
the entire road network. The minimum error rate of our technique
is 18% (top left of Figure 3) and 8% (bottom left of Figure 3), while
the other two approaches have much higher error rates. The second
metric is the relative improvement of our technique over existing
methods on travel times on all road segments. Themaximum relative
improvements over Hunter et al. [2014] and Rahmani et al. [2015]
under the SO model (top center of Figure 3) are 78% and 97%, and
under the Timestamp model (bottom center of Figure 3) are 54%
and 49%. The third metric evaluates the map-matching accuracy.
The maximum relative improvements of our method over Hunter
et al. [2014] and Rahmani et al. [2015] are 28% and 34% under the
SO model, and 19% and 25% under the Timestamp model. These
results are shown on the right of Figure 3. The details of these
experiments and the evaluation of the bilevel optimization can be
found in Appendix A.2.

6.2 Metamodel-Based Simulation Optimization
We compare our technique against the approach that only uses the
traffic simulator (i.e. SUMO [Krajzewicz et al. 2012]) on various OD
demands and road networks.
We set up our experiments by starting at the center of the road

network in San Francisco and gradually increase the radius to re-
trieve networks with 20 to 5,000 road segments. This step results
in 48 road networks. For all DAGs constructed in all networks, the
OD demand varies from 1,000veh/hr to 10,000veh/hr with an in-
crement of 1,000veh/hr .

In Figure 4, we show the accuracy of our technique compared to
the approach using only the traffic simulator. For each road network
in the experiment, we randomly select an intersection and randomly
assign the turning ratios at this intersection. The assigned turning
ratios (i.e. a decision point) are treated as the ground truth for the

Fig. 4. The error level of ours vs. simulation-only approach: For a
given road network and a specific OD demand, we first compute the differ-
ences between the two methods with respect to the ground truth. Then, we
subtract these two differences to obtain one error difference measure (i.e.
a gray cross). The mean, minimum, and maximum values of the average
error level (indicated by the solid line) are respectively 7.8%, 0%, and 13%.
In many cases, our technique even outperforms the simulation with much
smaller differences to the ground truth, as indicated by the negative values.

two approaches to recover. Since the most accurate method for
recovering a traffic condition is the microscopic simulator [Sewall
et al. 2011b], we use the error level of the microscopic simulator
to the ground truth as the baseline. For each decision point, we
first compute the difference between the recovered value using our
technique to the ground truth, as well as the difference between
the recovered value by the simulator to the ground truth. Then, we
subtract these two error differences and represent the result as a
gray cross in Figure 4. The mean, minimum, and maximum values
of the average deviations to the simulator (indicated by the solid
line in Figure 4), are respectively 7.8%, 0%, and 13%. In many cases,
our technique even outperforms the simulation with much smaller
differences to the ground truth, as indicated by the negative values
in Figure 4. 3

In the second study, we analyze the performance speedup achieved
by our technique over the simulation-only approach. The results are
shown in Figure 5. Each gray cross indicates a speedup measure for
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Fig. 5. The performance speedup of our technique over the
simulation-only approach: Our technique in on average about 27.2x
faster, with maximum and minimum performance gains of 35.6x and 16.1x .
The maximum observed performance gain of a single speedup measure is
over 90x (at OD demand = 9,000).

a particular road network and a specific OD demand. The highest
speedup is over 90x . On average, the maximum speedup is about
35.6x and the minimum speedup is about 16.1x . There also exist
several cases where our technique demonstrates rather negligible
speedups (i.e. values close to 0). This is because, for these cases, the
initial random guess of the decision point is close to the ground
truth. Consequently, either method can achieve a quick convergence.
In reality, we expect these scenarios to happen rarely. Finally, in
nearly all experiments, our technique converges in the first five
iterations.

6.3 Traffic Visualization and Animation
To demonstrate the effectiveness of our approach, we use GPS data
from taxicabs in San Francisco to perform traffic visualization and
animation on a metropolitan scale. This dataset from [Piorkowski
et al. 2009] consists of GPS traces from 536 taxicabs. The overall
number of GPS traces is over 11 million, resulting in over 4.7 million
kilometers of traveled distance.

In Figure 6 (top row), we show the visualization results over four
time intervals: Sunday 9AM, Tuesday 9AM, Thursday Noon, and
Friday 7PM, which exemplify weekend morning traffic, weekday
morning traffic, weekday mid-day traffic, and weekday evening traffic,
respectively. In San Francisco, first the congestion level of Sunday
9AM is low compared to the rest of the time intervals across all
areas. Second, the congestion of Tuesday 9AM is more severe in the
north-west, central-west, and central-east areas (residential regions)
than the same areas in other time intervals. Lastly, the north-east
region (downtown commercial and financial districts) of Tuesday
9AM and Friday 7PM appear to have more severe congestion than
other time intervals.
In addition to the qualitative results, we have quantitatively com-
pared our reconstructed results with loop-detector data4 extracted
from the same location and time periods as the GPS data. The loop-
detector data represents relatively accurate measurements and is
often regarded as the de-facto standard for evaluating GPS-based
estimations [Work et al. 2010]. After applying a filtering process,

4The loop-detector data is obtained from http://pems.dot.ca.gov/.

which is explained in Appendix A.3, our reconstruction approxi-
mates the accurate loop-detector readings with small losses (around
1m/s) in the speed measurement. This validation result can be found
in the bottom row of Figure 6.
As a result of the dynamic data completion, we obtain turning

ratios that not only can lead to simulations that respect the recon-
structed conditions, but also serve as a means to complete missing
information in regions where the GPS data is scarce. The results
can be illustrated using both 2D and 3D traffic animation for var-
ious virtual-world applications. In Figure 7, we provide 2D traffic
animation of four regions in San Francisco5 using the reconstructed
traffic on Friday at 7PM. This 2D animation can be used to study
dynamic traffic patterns at a metropolitan scale. The downtown
area is further modeled in a 3D Virtual San Francisco to showcase
the potential of embedding real-world traffic in a virtual world for
immersive VR experiences and virtual tourism applications (see
Figure 8). We have used the real-world GPS data throughout our
experiments. Though such data may not be representative of over-
all traffic patterns, our approach is independent from data sources.
The effectiveness is demonstrated using both synthetic datasets
(Figure 3) and real-world datasets (Figure 6).

7 CONCLUSION AND FUTURE WORK
We have presented an efficient algorithm to reconstruct city-scale
traffic from GPS data using statistical learning. To address the issues
with incomplete and/or sparse data, a metamodel-based simulation
optimization is proposed to dynamically bridge the “gap” between
the reconstructed traffic learned from GPS data and the simulated
traffic where the data is incomplete or missing. This approach is
able to perform visualization of city-scale traffic, as well as data-
driven 2D and 3D traffic animation in a virtual environment. With
more GPS datasets being made available and released to public,
e.g. Mobile Century [Herrera et al. 2010], T-Drive [Microsoft 2010],
GeoLife [Microsoft 2009], and Uber Movement [Uber 2017], we
believe future research would be abundant.
Although the proposed approach is specialized for traffic recon-

struction, similar approaches can be developed to reconstruct aggre-
gate dynamics of other multi-agent systems using spatial-temporal
data, such as schools of fishes, flocks of birds, and swarms of insects.
More importantly, the idea of learning from mobile sensor data
as well as the concept of using metamodel-based optimization to
refine the simulation parameters and to accelerate local fitting for
large-scale motion reconstruction are generalizable to many other
domains in addition to computer graphics.
Our framework has some limitations. First, the accompanying

animation in the supplementary video may exhibit some odd be-
haviors of individual vehicles. This is implementation specific due
to the use of SUMO that decides lane priorities at intersections
(different from turning ratios) and stochastically sample vehicle
behaviors, such as acceleration, deceleration, and lane-changing
frequency. However, such occasional visual artifacts do not affect
our results macroscopically and our algorithm is independent of a
specific traffic simulator. Other microscopic simulators and more
advanced vehicle kinematic models can be easily integrated with

5The number of lanes of a road segment is decided by the digital map.
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Fig. 6. Qualitative (visualization) and quantitative analysis of traffic in San Francisco. Top: We use four time periods in a week, namely Sunday 9AM,
Tuesday 9AM, Thursday Noon, and Friday 7PM, to illustrate weekend vs. weekday and morning vs. evening traffic. The traffic is measured by volume over
capacity (VOC) which is computed as

∑
e∈E (f (e )/c (e )) where c (e ) is the capacity of the road segment e defined in Appendix A.1. Bottom: We compare our

reconstructed results (after a filtering process explained in Appendix A.3) with the data of three loop detectors. The results show small losses (around 1m/s ) in
the speed measurement.

Fig. 7. 2D traffic animation of regions in San Francisco: Northeast (top left), Central-East (top center), Central (top Right), Northwest (bottom). We have
exaggerated the headlights and adopted an evening time period (i.e. Friday 7PM) to make vehicles more visible.

our framework to further improve the animation quality. Second,
the accuracy of our reconstruction is limited by the available data.
While we can maintain the accuracy down to the road-segment level,
high frequency vehicle positions can not be precisely modeled, as
such information is largely missing from the data. Third, while we
can satisfy the flow conservation in each sub-network that runs our
technique, such a relationship is difficult to maintain at a city scale.
As we expect more in-road sensors to be deployed in the future, this
problem will be alleviated.

There are a number of future directions. Algorithmically, one ex-
tension is to combine other data sources (in-road sensors, video
streams, or surveying) with GPS traces to further improve the
reconstruction accuracy. Another possibility is to incorporate a
macroscopic traffic simulator, so that we can dynamically switch
between simulators of varying fidelities to further reduce the com-
putational cost. Application-wise, a virtual tourism system, a route
planning [Wilkie et al. 2011] and navigation system [Wilkie et al.
2014], or an autonomous vehicle training system can immediately
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Fig. 8. 3D traffic animation: a perspective overview (left), a topdown view (center), and a driver’s view (right).

benefit from this work by incorporating and visualizing traffic con-
ditions reflecting real-world dynamics.
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