
ADAPS: Autonomous Driving Via Principled Simulations

Weizi Li1, David Wolinski1, and Ming C. Lin1,2

Abstract— Autonomous driving has gained significant ad-
vancements in recent years. However, obtaining a robust control
policy for driving remains challenging as it requires training
data from a variety of scenarios, including rare situations (e.g.,
accidents), an effective policy architecture, and an efficient
learning mechanism. We propose ADAPS for producing robust
control policies for autonomous vehicles. ADAPS consists of two
simulation platforms in generating and analyzing accidents to
automatically produce labeled training data, and a memory-
enabled hierarchical control policy. Additionally, ADAPS offers
a more efficient online learning mechanism that reduces the
number of iterations required in learning compared to existing
methods such as DAGGER [1]. We present both theoretical
and experimental results. The latter are produced in simulated
environments, where qualitative and quantitative results are
generated to demonstrate the benefits of ADAPS.

I. INTRODUCTION

Autonomous driving consists of many complex sub-tasks
that consider the dynamics of an environment and often
lack accurate definitions of various driving behaviors. These
characteristics lead to conventional control methods to suffer
subpar performance on the task [2], [3]. However, driving
and many other tasks can be easily demonstrated by human
experts. This observation inspires imitation learning, which
leverages expert demonstrations to synthesize a controller.

While there are many advantages of using imitation learn-
ing, it also has drawbacks. For autonomous driving, the
most critical one is covariate shift, meaning the training and
test distributions are different. This could lead autonomous
vehicles (AVs) to accidents since a learned policy may fail
to respond to unseen scenarios including those dangerous
situations that do not occur often.

In order to mitigate this issue, the training dataset needs
to be augmented with more expert demonstrations covering
a wide spectrum of driving scenarios—especially ones of
significant safety threats to the passengers—so that a policy
can learn how to recover from its own mistakes. This is
emphasized by Pomerleau [4], who synthesized a neural
network based controller for AVs: “the network must not
solely be shown examples of accurate driving, but also how
to recover (i.e. return to the road center) once a mistake has
been made.”

Although critical, obtaining recovery data from accidents
in the physical world is impractical due to the high cost of a
vehicle and potential injuries to both passengers and pedestri-
ans. In addition, even one managed to collect accident data,

1W. Li, D. Wolinski, M. Lin are with the Department of Com-
puter Science, University of North Carolina at Chapel Hill, NC, USA
{weizili,dwolinsk,lin}@cs.unc.edu

2M. Lin is now with the Department of Computer Science, University of
Maryland at College Park, MD, USA lin@cs.umd.edu

human experts are usually needed to label them, which is
inefficient and may subject to judgmental errors [5].

These difficulties naturally lead us to the virtual world,
where accidents can be simulated and analyzed [6]. We have
developed ADAPS (Autonomous Driving Via Principled
Simulations) to achieve this goal. ADAPS consists of two
simulation platforms and a memory-enabled hierarchical
control policy based on deep neural networks (DNNs). The
first simulation platform, referred to as SimLearner, runs in a
3D environment and is used to test a learned policy, simulate
accidents, and collect training data. The second simulation
platform, referred to as SimExpert, acts in a 2D environment
and serves as the “expert” to analyze and resolve an accident
via principled simulations that can plan alternative safe
trajectories for a vehicle by taking its physical, kinematic,
and geometric constraints into account.

Furthermore, ADAPS represents a more efficient online
learning mechanism than existing methods such as DAG-
GER [1]. This is useful consider learning to drive requires
iterative testing and update of a control policy. Ideally, we
want to obtain a robust policy using minimal iterations
since one iteration corresponds to one incident. This would
require the generation of training data at each iteration to be
accurate, efficient, and sufficient so that a policy can gain a
large improvement going into the next iteration. ADAPS can
assist to achieve this goal.

The main contributions of this research are specifically:
(1) The accidents generated in SimLearner will be analyzed
by SimExpert to produce alternative safe trajectories. (2)
These trajectories will be automatically processed to gen-
erate a large number of annotated and segmented training
data. Because SimExpert is parameterized and has taken the
physical, kinematic, and geometric constraints of a vehicle
into account (i.e., principled), the resulting training examples
are more heterogeneous than data collected via running a
learned policy multiple times and are more effective than
data collected through random sampling. (3) We present
both theoretical and experimental results to demonstrate that
ADAPS is an efficient online learning mechanism.

The Appendix, which contains supporting material, can be
found at http://gamma.cs.unc.edu/ADAPS/.

II. RELATED WORK

We sample previous studies that are related to each aspect
of our framework and discuss the differences within.

Autonomous Driving. Among various methods to plan
and control an AV [7], we focus on end-to-end imitation
learning as it can avoid manually designed features and
lead to a more compact policy compared to conventional

ar
X

iv
:1

90
7.

08
87

4v
1

 [
cs

.R
O

]
 2

0
Ju

l 2
01

9

http://gamma.cs.unc.edu/ADAPS/

mediation perception approaches [8]. The early studies done
by Pomerleau [4] and LeCun et al. [9] have shown that neural
networks can be used for an AV to achieve lane-following
and off-road obstacle avoidance. Due to the advancements
of deep neural networks (DNNs), a number of studies have
emerged [10], [11], [12], [13]. While significant improve-
ments have been made, these results mainly inherit normal
driving conditions and restrict a vehicle to the lane-following
behavior [13]. Our policy, in contrast, learns from accidents
and enables a vehicle to achieve on-road collision avoidance
with both static and dynamic obstacles.

Hierarchical Control Policy. There have been many
efforts in constructing a hierarchical policy to control an
agent at different stages of a task [14]. Example studies
include the options framework [15] and transferable motor
skills [16]. When combined with DNNs, the hierarchical
approach has been adopted for virtual characters to learn
locomotion tasks [17]. In these studies, the goal is to discover
a hierarchical relationship from complex sensorimotor behav-
iors. We apply a hierarchical and memory-enabled policy to
autonomous driving based on multiple DNNs. Our policy
enables an AV to continuously categorize the road condition
as safe or dangerous, and execute corresponding control
commands to achieve accident-free driving.

Generative Policy Learning. Using principled simula-
tions to assist learning is essentially taking a generative
model approach. Several studies have adopted the same
philosophy to learn (near-)optimal policy, examples including
function approximations [18], Sparse Sampling [19], and
Fitted Value Iteration [20]. These studies leverage a gener-
ative model to stochastically generate training samples. The
emphasize is to simulate the feedback from an environment
instead of the dynamics of an agent assuming the reward
function is known. Our system, on the other hand, does
not assume any reward function of a driving behavior but
models the physical, kinematic, and geometric constraints of
a vehicle, and uses simulations to plan their trajectories w.r.t.
environment characteristics. In essence, our method learns
from expert demonstrations rather than self-exploration [21]
as of the previous studies.

III. PRELIMINARIES

Autonomous driving is a sequential prediction and con-
trolled (SPC) task, for which a system must predict a
sequence of control commands based on inputs that depend
on past predicted control commands. Because the control
and prediction processes are intertwined, SPC tasks often
encounter covariate shift, meaning the training and test
distributions vary. In this section, we will first introduce
notation and definitions to formulate an SPC task and then
briefly discuss its existing solutions.

A. Notation and Definitions

The problem we consider is a T -step control task. Given
the observation φ = φ(s) of a state s at each step t ∈ [[1, T]],
the goal of a learner is to find a policy π ∈ Π such that its
produced action a = π(φ) will lead to the minimal cost:

π̂ = arg min
π∈Π

T∑
t=1

C (st, at) , (1)

where C (s, a) is the expected immediate cost of performing
a in s. For many tasks such as driving, we may not know
the true value of C. So, we instead minimize the observed
surrogate loss l(φ, π, a∗), which is assumed to upper bound
C, based on the approximation of the learner’s action a =
π(φ) to the expert’s action a∗ = π∗(φ). We denote the
distribution of observations at t as dtπ , which is the result of
executing π from 1 to t−1. Consequently, dπ = 1

T

∑T
t=1 d

t
π

is the average distribution of observations by executing π for
T steps. Our goal is to solve an SPC task by obtaining π̂ that
minimizes the observed surrogate loss under its own induced
observations w.r.t. expert’s actions in those observations:

π̂ = arg min
π∈Π

Eφ∼dπ,a∗∼π∗(φ) [l (φ, π, a∗)] . (2)

We further denote ε = Eφ∼dπ∗ ,a∗∼π∗(φ) [l (φ, π, a∗)] as the
expected loss under the training distribution induced by the
expert’s policy π∗, and the cost-to-go over T steps of π̂
as J (π̂) and of π∗ as J (π∗). It has been shown that by
simply treating expert demonstrations as i.i.d. samples the
discrepancy between J (π̂) and J (π∗) is O(T 2ε) [22], [1].
Given the error of a typical supervised learning is O (Tε),
this demonstrates the additional cost due to covariate shift
when solving an SPC task via standard supervised learning1.

B. Existing Techniques

Several approaches have been proposed to solve SPC tasks
using supervised learning while keeping the error growing
linearly instead of quadratically with T [22], [1], [23].
Essentially, these methods reduce an SPC task to online
learning. By further leveraging interactions with experts and
no-regret algorithms that have strong guarantees on convex
loss functions [24], at each iteration, these methods train one
or multiple policies using standard supervised learning and
improve the trained policies as the iteration continues.

To illustrate, we denote the best policy at the ith iteration
(trained using all observations from the previous i − 1
iterations) as πi and for any policy π ∈ Π we have its
expected loss under the observation distribution induced by
πi as li (π) = Eφ∼dπi ,a∗∼π∗(φ) [li (φ, π, a∗)] , li ∈ [0, lmax]2.
In addition, we denote the minimal loss in hindsight after
N ≥ i iterations as εmin = minπ∈Π

1
N

∑N
i=1 li(π) (i.e., the

training loss after using all observations from N iterations).
Then, we can represent the average regret of this online
learning program as εregret = 1

N

∑N
i=1 li(πi)− εmin. Using

DAGGER [1] as an example method, the accumulated error
difference becomes the summation of three terms:

J (π̂) ≤ Tεmin + Tεregret +O(
f (T, lmax)

N
), (3)

1The proofs regarding results O(T 2ε) and O(Tε) can be found in
Appendix IX-A.

2In online learning, the surrogate loss l can be seen as chosen by some
adversary which varies at each iteration.

where f (·) is the function of fixed T and lmax. As N →∞,
the third term tends to 0 so as the second term if a no-regret
algorithm such as the Follow-the-Leader [25] is used.

The aforementioned approach provides a practical way to
solve SPC tasks. However, it may require many iterations
for obtaining a good policy. In addition, usually human
experts or pre-defined controllers are needed for labeling the
generated training data, which could be inefficient or difficult
to generalize. For autonomous driving, we want the iteration
number to be minimal since it directly corresponds to the
number of accidents. This requires the generation of training
data being accurate, efficient, and sufficient.

IV. ADAPS

In the following, we present theoretical analysis of our
framework and introduce our framework pipeline.

A. Theoretical Analysis

We have evaluated our approach against existing learning
mechanisms such as DAGGER [1], with our method’s results
proving to be more effective. Specifically, DAGGER [1]
assumes that an underlying learning algorithm has access to
a reset model. So, the training examples can be obtained only
online by putting an agent to its initial state distribution and
executing a learned policy, thus achieving “small changes”
at each iteration [1], [23], [26], [27]. In comparison, our
method allows a learning algorithm to access a generative
model so that the training examples can be acquired offline
by putting an agent to arbitrary states during the analysis
of an accident and letting a generative model simulate its
behavior. This approach results in massive training data, thus
achieving “large changes” of a policy at one iteration.

Additionally, existing techniques such as DAGGER [1]
usually incorporate the demonstrations of a few experts into
training. Because of the reset model assumption and the lack
of a diversity requirement on experts, these demonstrations
can be homogeneous. In contrast, using our parameterized
model to retrace and analyze each accident, the number of re-
covery actions obtained can be multiple orders of magnitude
higher. Subsequently, we can treat the generated trajectories
and the additional data generated based on them (described
in Section VI-B) as running a learned policy to sample
independent expert trajectories at different states, since 1)
a policy that is learned using DNNs can achieve a small
training error and 2) our model provides near-exhaustive
coverage of the configuration space of a vehicle. With these
assumptions, we derive the following theorem.

Theorem 1: If the surrogate loss l upper bounds the true
cost C, by collecting K trajectories using ADAPS at each
iteration, with probability at least 1−µ, µ ∈ (0, 1), we have
the following guarantee:

J (π̂) ≤ J (π̄) ≤ T ε̂min+T ε̂regret+O

T lmax
√

log 1
µ

KN

 .

Proof: See Appendix IX-A.3.
Theorem 1 provides a bound for the expected cost-to-go of

the best learned policy π̂ based on the empirical error of the

best policy in Π (i.e., ε̂min) and the empirical average regret
of the learner (i.e., ε̂regret). The second term can be elimi-
nated if a no-regret algorithm such as Follow-the-Leader [25]
is used and the third term suggests that we need the number
of training examples KN to be O

(
T 2l2max log 1

µ

)
in order

to have a negligible generalization error, which is easily
achievable using ADAPS. Summarizing these changes, we
derive the following Corollary.

Corollary 1: If l is convex in π for any s and it up-
per bounds C, and Follow-the-Leader is used to select
the learned policy, then for any ε > 0, after collecting

O
(
T 2l2max log 1

µ

ε2

)
training examples, with probability at least

1− µ, µ ∈ (0, 1), we have the following guarantee:

J (π̂) ≤ J (π̄) ≤ T ε̂min +O (ε) .

Proof: Following Theorem 1 and the aforementioned
deduction.

Now we only need the best policy to have a small training
error ε̂min. This can be achieved using DNNs since they have
rich representing capabilities.

B. Framework Pipeline
The pipeline of our framework is the following. First, in

SimLearner, we test a learned policy by letting it control
an AV. During the testing, an accident may occur, in which
case the trajectory of the vehicle and the full specifications of
the situation (e.g., positions of obstacles, road configuration,
etc.) are known. Next, we switch to SimExpert and replicate
the specifications of the accident so that we can “solve” the
accident (i.e., find alternative safe trajectories and dangerous
zones). After obtaining the solutions, we then use them to
generate additional training data in SimLearner, which will
be combined with previously generated data to update the
policy. Finally, we test the updated policy again.

V. POLICY LEARNING

In this section, we will detail our control policy by first
explaining our design rationale then formulating our problem
and introducing the training data collection.

Driving is a hierarchical decision process. In its simplest
form, a driver needs to constantly monitor the road condition,
decide it is “safe” or “dangerous”, and make corresponding
maneuvers. When designing a control policy for AVs, we
need to consider this hierarchical aspect. In addition, driving
is a temporal behavior. Drivers need reaction time to respond
to various road situations [28], [29]. A Markovian-based
control policy will not model this aspect and instead likely
to give a vehicle jerky motions. Consider these factors, we
propose a hierarchical and memory-enabled control policy.

The task we consider is autonomous driving via a single
front-facing camera. Our control policy consists of three
modules: Detection, Following, and Avoidance. The Detec-
tion module keeps monitoring road conditions and activates
either Following or Avoidance to produce a steering com-
mand. All these modules are trained via end-to-end imitation
learning and share a similar network specification which is
detailed in Appendix IX-B.

A. End-to-end Imitation Learning

The objective of imitation learning is to train a model
that behaves or makes decisions like an expert through
demonstrations. The model could be a classifier or a regresser
π parameterized by θπ:

θ̂ = arg min
θπ

T∑
t=1

F (π (φt; θπ) , a∗t) , (4)

where F is a distance function.
The end-to-end aspect denotes the mapping from raw

observations to decision/control commands. For our policy,
we need one decision module πDetection and two control
modules πFollowing and πAvoidance. The input for πDetection
is a sequence of annotated images while the outputs are
binary labels indicating whether a road condition is danger-
ous or safe. The inputs for πFollowing and πAvoidance are
sequences of annotated images while the outputs are steering
angles. Together, these learned policies form a hierarchical
control mechanism enabling an AV to drive safely on roads
and avoid obstacles when needed.

B. Training Data Collection

For training Following, inspired by the technique used by
Bojarski et al. [10], we collect images from three front-facing
cameras behind the main windshield: one at the center, one
at the left side, and one at the right side. The image from
the center camera is labeled with the exact steering angle
while the images from the other two cameras are labeled with
adjusted steering angles. However, once Following is learned,
it only needs images from the center camera to operate.

For training Avoidance, we rely on SimExpert, which can
generate numerous intermediate collision-free trajectories
between the first moment and the last moment of a potential
accident (see Section VI-A). By positioning an AV on these
trajectories, we collect images from the center front-facing
camera along with corresponding steering angles. The train-
ing of Detection requires a more sophisticated mechanism
and is the subject of the next section.

VI. LEARNING FROM ACCIDENTS

We explain how we analyze an accident in SimExpert and
use the generated data to train the Avoidance and Detection
modules of our policy. SimExpert is built based on the multi-
agent simulator WarpDriver [30].

A. Solving Accidents

When an accident occurs, we know the trajectory of the
tested vehicle for the latest K frames, which we note as a
collection of states S =

⋃
k∈[[1,K]] sk, where each state sk ∈

R4 contains the 2-dimensional position and velocity vectors
of the vehicle. Then, there are three notable states on this
trajectory that we need to track. The first is the earliest state
where the vehicle involved in an accident (is in a collision)
ska (at frame ka). The second is the last state skl (at frame
kl) where the expert algorithm can still avoid a collision. The
final one is the first state skf (at frame kf) where the expert

Fig. 1. Illustration of important points and DANGER/SAFE labels from
Section VI for a vehicle traveling on the right lane of a straight road, with
an obstacle in front. Labels are shown for four points {lu1, lu2, lu3, lu4}
illustrating the four possible cases.

algorithm perceives the interaction leading to the accident
with the other involved agent, before that accident.

In order to compute these notable states, we briefly
recall the high-level components of WarpDriver [30]. This
collision-avoidance algorithm consists of two parts. The first
is the function p, which given the current state of an agent
sk and any prediction point x ∈ R3 in 2-dimensional space
and time (in this agent’s referential), gives the probability of
that agent’s colliding with any neighbor p(sk,x) ∈ [0, 1].
The second part is the solver, which based on this function,
computes the agent’s probability of colliding with neighbors
along its future trajectory starting from a state sk (i.e., com-
puted for x spanning the future predicted trajectory of the
agent, we denote this probability P (sk)), and then proposes
a new velocity to lower this probability. Subsequently, we
can initialize an agent in this algorithm to any state sk ∈ S
and compute a new trajectory consisting of K̂ new states
Ŝk =

⋃
k̂∈[[1,K̂]] ŝk̂, where ŝ1 = sk.

Additionally, since x = (0, 0, 0) in space and time in
an agent’s referential represents the agent’s position at the
current time (we can use this point x with function p to
determine if the agent is currently colliding with anyone),
we find ska where ka = min(k) subject to k ∈ [[1,K]]
and p(sk, (0, 0, 0)) > 0. We note that a trajectory Ŝk
produced by the expert algorithm could contain collisions
(accounting for vehicle dynamics) depending on the state
sk that it was initialized from. We can denote the set of
colliding states along this trajectory as coll(Ŝk) = {ŝk̂ ∈
Ŝk | p(̂sk̂, (0, 0, 0)) > 0}. Then, we can compute skl where
kl = max(k) subject to k ∈ [[1, ka]] and coll(Ŝk) = ∅.
Finally, we can compute skf with kf = 1 +max(k) subject
to k ∈ [[1, kl]] and P (sk) = 0.

Knowing these notable states, we can solve the accident
situation by computing the set of collision-free trajectories
solve(S) = {Ŝk | k ∈ [[kf , kl]]}. An example can be found
in Appendix IX-C. These trajectories can then be used to
generate training examples in SimLearner in order to train
the Avoidance module.

B. Additional Data Coverage

The previous step generated collision-free trajectories
solve(S) between skf and skl . It is possible to build on these
trajectories if the tested steering algorithm has particular
data/training requirements. Here we detail the data we derive
in order to train the Detection module, where the task is to

determine if a situation is dangerous and tell Avoidance to
address it.

To proceed, we essentially generate a number of trajec-
tories parallel to {skf , ..., ska}, and for each position on
them, generate several images for various orientations of
the vehicle. These images are then labeled based on under-
steering/over-steering as compared to the “ideal” trajectories
in solve(S). This way, we scan the region of the road be-
fore the accident locus, generating several images (different
vehicle orientations) for each point in that region.

In summary (a thorough version can be found in Ap-
pendix IX-D), and as depicted in Figure 1, at each state sk,
we construct a line perpendicular to the original trajectory.
Then on this line, we define three points and a margin g =
0.5 m. The first point li is the furthest (from sk) intersection
between this line and the collision-free trajectories solve(S).
The other two points {lrl, lrr} are the intersections between
the constructed line and the left and right road borders, re-
spectively. From these points, a generated image at a position
lu along the constructed line and with a given direction
vector has either a DANGER or SAFE label (red and green
ranges in Figure 1) depending on the direction vector being
on the “left” or “right” of the vector resulting from the
interpolation of the velocity vectors of states belonging to
nearby collision-free trajectories (bilinear interpolation if lu
is between two collision-free trajectories, linear otherwise).

If a point is on the same side of the original trajectory
as the collision-free trajectories (lu1 and lu2 in Figure 1,
lu1 is “outside” but within the margin g of the collision-free
trajectories, lu2 is “inside” the collision-free trajectories), the
label is SAFE on the exterior of the avoidance maneuver, and
DANGER otherwise.

If a point is on the other side of the original trajectory
as compared to the collision-free trajectories (lu3 and lu4

in Figure 1)), inside the road (lu3) the label is always
DANGER, while outside but within the margin g of the road
(lu4), the label is DANGER when directed towards the road,
and SAFE otherwise.

VII. EXPERIMENTS

We test our framework in three scenarios: a straight road
representing a linear geometry, a curved road representing a
non-linear geometry, and an open ground. The first two sce-
narios demonstrate on-road situations with a static obstacle
while the last one demonstrates an off-road situation with a
dynamic obstacle. The specifications of our experiments are
detailed in Appendix IX-E.

For evaluation, we compare our policy to the “flat policy”
that essentially consists of a single DNN [8], [11], [31],
[13]. Usually, this type of policy contains a few convolu-
tional layers followed by a few dense layers. Although the
specifications may vary, without human intervention, they are
mainly limited to single-lane following [13]. In this work,
we select Bojarski et al. [10] as an example network, as it
is one of the most tested control policies. In the following,
we will first demonstrate the effectiveness of our policy and
then qualitatively illustrate the efficiency of our framework.

A. Control Policy

1) On-road: We derive our training datasets from straight
road with or without an obstacle and curved road with
or without an obstacle. This separation allows us to train
multiple policies and test the effect of learning from acci-
dents using our policy compared to Bojarski et al. [10]. By
progressively increasing the training datasets, we obtain six
policies for evaluation:
• Our own policy: trained with only lane-following

data Ofollow; Ofollow additionally trained after an-
alyzing one accident on the straight road Ostraight;
and Ostraight additionally trained after producing one
accident on the curved road Ofull.

• Similarly, for the policy from Bojarski et al. [10]:
Bfollow, Bstraight, and Bfull.

We first evaluate Bfollow and Ofollow using both the
straight and curved roads by counting how many laps (out
of 50) the AV can finish. As a result, both policies managed
to finish all laps while keeping the vehicle in the lane. We
then test these two policies on the straight road with a static
obstacle added. Both policies result in the vehicle collides
into the obstacle, which is expected since no accident data
were used during the training.

Having the occurred accident, we can now use SimExpert
to generate additional training data to obtain Bstraight

3

and Ostraight. As a result, Bstraight continues to cause
collision while Ostraight avoids the obstacle. Nevertheless,
when testing Ostraight on the curved road with an obstacle,
accident still occurs because of the corresponding accident
data are not yet included in training.

By further including the accident data from the curved
road into training, we obtain Bfull and Ofull. Ofull manages
to perform both lane-following and collision avoidance in all
runs. Bfull, on the other hand, leads the vehicle to drift away
from the road.

For the studies involved an obstacle, we uniformly sam-
pled 50 obstacle positions on a 3 m line segment that is
perpendicular to the direction of a road and in the same lane
as the vehicle. We compute the success rate as how many
times a policy can avoid the obstacle (while stay in the lane)
and resume lane-following afterwards. The results are shown
in Table II and example trajectories are shown in Figure 2
LEFT and CENTER.

2) Off-road: We further test our method on an open
ground which involves a dynamic obstacle. The AV is trained
heading towards a green sphere while an adversary vehicle
is scripted to collide with the AV on its default course.
The result showing our policy can steer the AV away from
the adversary vehicle and resume its direction to the sphere
target. This can be seen in Figure 2 RIGHT.

B. Algorithm Efficiency

The key to rapid policy improvement is to generate
training data accurately, efficiently, and sufficiently. Using

3The accident data are only used to perform a regression task as the
policy by Bojarski et al. [10] does not have a classification module.

Fig. 2. LEFT and CENTER: the comparisons between our policy Ofull (TOP) and Bojarski et al. [10], Bfull (BOTTOM). Ofull can steer the AV away
from the obstacle while Bfull causes collision. RIGHT: the accident analysis results on the open ground. We show the accident caused by an adversary
vehicle (TOP); then we show after additional training the AV can now avoid the adversary vehicle (BOTTOM).

Training Module (Data) Other Specs

Scenarios Following (#Images) Avoidance (#Images) Detection (#Images) Total Data Augmentation #Safe Trajectories Road Type Obstacle

Straight road 33 642 34 516 32 538 97 854 212x 74 on-road static

Curved road 31 419 33 624 71 859 136 855 98x 40 on-road static

Open ground 30 000 33 741 67 102 130 843 178x 46 off-road dynamic

TABLE I
TRAINING DATA SUMMARY: OUR METHOD CAN ACHIEVE OVER 200 TIMES MORE TRAINING EXAMPLES THAN DAGGER [1] AT ONE ITERATION

LEADING TO LARGE IMPROVEMENTS OF A POLICY.

Test Policy and Success Rate (out of 50 runs)

Scenario Bfollow Ofollow Bstraight Ostraight Bfull Ofull

Straight rd. / Curved rd. 100% 100% 100% 100% 100% 100%

Straight rd. + Obst. 0% 0% 0% 100% 0% 100%

Curved rd. + Obst. 0% 0% 0% 0% 0% 100%

TABLE II
TEST RESULTS OF ON-ROAD SCENARIOS: OUR POLICIES Ostraight &

Ofull CAN LEAD TO ROBUST COLLISION AVOIDANCE AND

LANE-FOLLOWING BEHAVIORS.

principled simulations covers the first two criteria, now we
demonstrate the third. Compared to the average number of
training data collected by DAGGER [1] at one iteration, our
method can achieve over 200 times more training examples
for one iteration4. This is shown in Table I.

In Figure 3, we show the visualization results of images
collected using our method and DAGGER [1] within one
iteration via progressively increasing the number of sampled
trajectories. Our method generates much more heterogeneous
training data, which when produced in a large quantity can
greatly facilitate the update of a control policy.

VIII. CONCLUSION

In this work, we have proposed ADAPS, a framework that
consists of two simulation platforms and a control policy.
Using ADAPS, one can easily simulate accidents. Then,
ADAPS will automatically retrace each accident, analyze
it, and plan alternative safe trajectories. With the additional
training data generation technique, our method can produce a
large number of heterogeneous training examples compared
to existing methods such as DAGGER [1], thus representing
a more efficient learning mechanism. Our hierarchical and

4The result is computed via dividing the total number of training images
via our method by the average number of training data collected using the
safe trajectories in each scenario.

Fig. 3. The visualization results of collected images using t-SNE [32].
Our method can generate more heterogeneous training data compared to
DAGGER [1] at one iteration as the sampled trajectories progress.

memory-enabled policy offers robust collision avoidance
behaviors that previous policies fail to achieve. We have
evaluated our method using multiple simulated scenarios, in
which our method shows a variety of benefits.

There are many future directions. First of all, we would
like to combine long-range vision into ADAPS so that an
AV can plan ahead in time. Secondly, the generation of
accidents can be parameterized using knowledge from traffic
engineering studies. Lastly, we would like to combine more
sensors and fuse their inputs so that an AV can navigate in
more complicated traffic scenarios [33].

ACKNOWLEDGMENT

The authors would like to thank US Army Research Office
and UNC Arts & Science Foundation, and Dr. Feng “Bill”
Shi for insightful discussions.

REFERENCES

[1] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics, 2011, pp. 627–635.

[2] N. Ratliff, “Learning to search: structured prediction techniques for
imitation learning,” Ph.D. dissertation, Carnegie Mellon University,
2009.

[3] D. Silver, “Learning preference models for autonomous mobile robots
in complex domains,” Ph.D. dissertation, 2010.

[4] D. Pomerleau, “ALVINN: An autonomous land vehicle in a neural
network,” in Advances in neural information processing systems, 1989,
pp. 305–313.

[5] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey,
J. A. Bagnell, and M. Hebert, “Learning monocular reactive uav con-
trol in cluttered natural environments,” in Robotics and Automation,
2013 IEEE International Conference on. IEEE, 2013, pp. 1765–1772.

[6] Q. Chao, H. Bi, W. Li, T. Mao, Z. Wang, M. C. Lin, and Z. Deng,
“A survey on visual traffic simulation: Models, evaluations, and
applications in autonomous driving,” Computer Graphics Fourm, 2019.

[7] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-
making for autonomous vehicles,” Annual Review of Control, Robotics,
and Autonomous Systems, 2018.

[8] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Computer
Vision, 2015 IEEE International Conference on, 2015, pp. 2722–2730.

[9] Y. LeCun, U. Muller, J. Ben, E. Cosatto, and B. Flepp, “Off-road
obstacle avoidance through end-to-end learning,” in Advances in
neural information processing systems, 2005, pp. 739–746.

[10] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[11] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of driving
models from large-scale video datasets,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3530–
3538.

[12] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and
B. Boots, “Agile off-road autonomous driving using end-to-end deep
imitation learning,” in Robotics: Science and Systems, 2018.

[13] F. Codevilla, M. Müller, A. Dosovitskiy, A. López, and V. Koltun,
“End-to-end driving via conditional imitation learning,” in Robotics
and Automation (ICRA), 2017 IEEE International Conference on.
IEEE, 2017, pp. 746–753.

[14] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical
reinforcement learning,” Discrete Event Dynamic Systems, vol. 13,
no. 4, pp. 341–379, 2003.

[15] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,”
Artificial intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[16] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot learn-
ing from demonstration by constructing skill trees,” The International
Journal of Robotics Research, vol. 31, no. 3, pp. 360–375, 2012.

[17] S. Levine and V. Koltun, “Guided policy search,” in Proceedings of
the 30th International Conference on Machine Learning (ICML), 2013,
pp. 1–9.

[18] G. J. Gordon, “Stable function approximation in dynamic program-
ming,” in Machine Learning Proceedings 1995. Elsevier, 1995, pp.
261–268.

[19] M. Kearns, Y. Mansour, and A. Y. Ng, “A sparse sampling algorithm
for near-optimal planning in large markov decision processes,” Ma-
chine learning, vol. 49, no. 2-3, pp. 193–208, 2002.

[20] C. Szepesvári and R. Munos, “Finite time bounds for sampling
based fitted value iteration,” in Proceedings of the 22nd international
conference on Machine learning, 2005, pp. 880–887.

[21] L.-J. Lin, “Self-improving reactive agents based on reinforcement
learning, planning and teaching,” Machine learning, vol. 8, no. 3-4,
pp. 293–321, 1992.

[22] U. Syed and R. E. Schapire, “A reduction from apprenticeship learning
to classification,” in Advances in Neural Information Processing
Systems, 2010, pp. 2253–2261.

[23] H. Daumé, J. Langford, and D. Marcu, “Search-based structured
prediction,” Machine learning, vol. 75, no. 3, pp. 297–325, 2009.

[24] S. M. Kakade and A. Tewari, “On the generalization ability of online
strongly convex programming algorithms,” in Advances in Neural
Information Processing Systems, 2009, pp. 801–808.

[25] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms
for online convex optimization,” Machine Learning, vol. 69, no. 2-3,
pp. 169–192, 2007.

[26] S. Kakade and J. Langford, “Approximately optimal approximate
reinforcement learning,” in Proceedings of the 30th International
Conference on Machine Learning (ICML), vol. 2, 2002, pp. 267–274.

[27] J. A. Bagnell, S. M. Kakade, J. G. Schneider, and A. Y. Ng, “Policy
search by dynamic programming,” in Advances in neural information
processing systems, 2004, pp. 831–838.

[28] G. Johansson and K. Rumar, “Drivers’ brake reaction times,” Human
factors, vol. 13, no. 1, pp. 23–27, 1971.

[29] D. V. McGehee, E. N. Mazzae, and G. S. Baldwin, “Driver reaction
time in crash avoidance research: validation of a driving simulator
study on a test track,” in Proceedings of the human factors and
ergonomics society annual meeting, vol. 44, no. 20, 2000.

[30] D. Wolinski, M. Lin, and J. Pettré, “Warpdriver: context-aware prob-
abilistic motion prediction for crowd simulation,” ACM Transactions
on Graphics (TOG), vol. 35, no. 6, 2016.

[31] J. Zhang and K. Cho, “Query-efficient imitation learning for end-to-
end simulated driving,” in AAAI, 2017, pp. 2891–2897.

[32] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[33] W. Li, D. Wolinski, and M. C. Lin, “City-scale traffic animation using
statistical learning and metamodel-based optimization,” ACM Trans.
Graph., vol. 36, no. 6, pp. 200:1–200:12, Nov. 2017.

[34] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[35] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol.
521, no. 7553, p. 436, 2015.

[36] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
ICLR, 2015.

IX. APPENDIX

A. Solving An SPC Task

We show the proofs of solving an SPC task using standard
supervised learning, DAGGER [1], and ADAPS, respec-
tively. We use “state” and ”observation” interchangeably
here as for these proofs we can always find a deterministic
function to map the two.

1) Supervised Learning: The following proof is adapted
and simplified from Ross et al. [1]. We include it here for
completeness.

Theorem 2: Consider a T -step control task. Let ε =
Eφ∼dπ∗ ,a∗∼π∗(φ) [l (φ, π, a∗)] be the observed surrogate loss
under the training distribution induced by the expert’s policy
π∗. We assume C ∈ [0, Cmax] and l upper bounds the 0-1
loss. J (π) and J (π∗) denote the cost-to-go over T steps
of executing π and π∗, respectively. Then, we have the
following result:

J (π) ≤ J (π∗) + CmaxT
2ε.

Proof: In order to prove this theorem, we introduce the
following notation and definitions:

• dπt,c: the state distribution at t as a result of the following
event: π is executed and has been choosing the same
actions as π∗ from time 1 to t− 1.

• pt−1 ∈ [0, 1]: the probability that the above-mentioned
event holds true.

• dπt,e: the state distribution at t as a result of the following
event: π is executed and has chosen at least one different
action than π∗ from time 1 to t− 1.

• (1 − pt−1) ∈ [0, 1]: the probability that the above-
mentioned event holds true.

• dπt = pt−1d
π
t,c + (1− pt−1)dπt,e: the state distribution at

t.
• εt,c: the probability that π chooses a different action

than π∗ in dπt,c.
• εt,e: the probability that π chooses a different action

than π∗ in dπt,e.
• εt = pt−1εt,c + (1 − pt−1)εt,e: the probability that π

chooses a different action than π∗ in dπt .
• Ct,c: the expected immediate cost of executing π in dπt,c.
• Ct,e: the expected immediate cost of executing π in dπt,e.
• Ct = pt−1Ct,c+(1−pt−1)Ct,e: the expected immediate

cost of executing π in dπt .
• C∗t,c: the expected immediate cost of executing π∗ in
dπt,c.

• Cmax: the upper bound of an expected immediate cost.
• J (π) =

∑T
t=1 Ct: the cost-to-go of executing π for T

steps.
• J (π∗) =

∑T
t=1 C

∗
t,c: the cost-to-go of executing π∗ for

T steps.

The probability that the learner chooses at least one different
action than the expert in the first t steps is:

(1− pt) = (1− pt−1) + pt−1εt,c.

This gives us (1− pt) ≤ (1− pt−1) + εt since pt−1 ∈ [0, 1].
Solving this recurrence we arrive at:

1− pt ≤
t∑
i=1

εi.

Now consider in state distribution dπt,c, if π chooses a
different action than π∗ with probability εt,c, then π will
incur a cost at most Cmax more than π∗. This can be
represented as:

Ct,c ≤ C∗t,c + εt,cCmax.

Thus, we have:

Ct = pt−1Ct,c + (1− pt−1)Ct,e

≤ pt−1C
∗
t,c + pt−1εt,cCmax + (1− pt−1)Cmax

= pt−1C
∗
t,c + (1− pt)Cmax

≤ C∗t,c + (1− pt)Cmax

≤ C∗t,c + Cmax

t∑
i=1

εi.

We sum the above result over T steps and use the fact
1
T

∑T
t=1 εt ≤ ε:

J (π) ≤ J (π∗) + Cmax

T∑
t=1

t∑
i=1

εi

= J (π∗) + Cmax

T∑
t=1

(T + 1− t)εt

≤ J (π∗) + CmaxT

T∑
t=1

εt

≤ J (π∗) + CmaxT
2ε.

2) DAGGER: The following proof is adapted from Ross
et al. [1]. We include it here for completeness. Note that for
Theorem 3, we have arrived at the different third term as of
Ross et al. [1].

Lemma 1: [1] Let P and Q be any two distributions over
elements x ∈ X and f : X → R, any bounded function such
that f(x) ∈ [a, b] for all x ∈ X . Let the range r = b − a.
Then |Ex∼P [f(x)]− Ex∼Q [f(x)] | ≤ r

2‖P −Q‖1.
Proof:

|Ex∼P [f(x)]− Ex∼Q [f(x)] |

= |
∫
x

P (x)f(x)dx−
∫
x

Q(x)f(x)dx|

= |
∫
x

f(x) (P (x)−Q(x)) dx|

= |
∫
x

(f(x)− c) (P (x)−Q(x)) dx|,∀c ∈ R

≤
∫
x

|f(x)− c||P (x)−Q(x)|dx

≤ max
x
|f(x)− c|

∫
x

|P (x)−Q(x)|dx

= max
x
|f(x)− c|‖P −Q‖1.

Taking c = a+ r
2 leads to maxx |f(x)− c| ≤ r

2 and proves
the lemma.

Lemma 2: [1] Let π̂i be the learned policy, π∗ be the
expert’s policy, and πi be the policy used to collect training
data with probability βi executing π∗ and probability 1−βi
executing π̂i over T steps. Then, we have ‖dπi − dπ̂i‖1 ≤
2 min(1, Tβi).

Proof: In contrast to dπ̂i which is the state distribution
as the result of solely executing π̂i, we denote d as the
state distribution as the result of πi executing π∗ at least
once over T steps. This gives us dπi = (1 − βi)

T dπ̂i +(
1− (1− βi)T

)
d. We also have the facts that for any two

distributions P and Q, ‖P − Q‖1 ≤ 2 and (1 − β)T ≥
1 − βT, ∀β ∈ [0, 1]. Then, we have ‖dπi − dπ̂i‖1 ≤ 2 and
can further show:

‖dπi − dπ̂i‖1 =
(
1− (1− βi)T

)
‖d− dπ̂i‖1

≤ 2
(
1− (1− βi)T

)
≤ 2Tβi.

Theorem 3: [1] If the surrogate loss l ∈ [0, lmax] is the
same as the cost function C or upper bounds it, then after
N iterations of DAGGER:

J (π̂) ≤ J (π̄) ≤ Tεmin + Tεregret +O(
f(T, lmax)

N
). (5)

Proof: Let li (π) = Eφ∼dπi ,a∗∼π∗(φ) [l (φ, π, a∗)]] be
the expected loss of any policy π ∈ Π under the state
distribution induced by the learned policy πi at the ith
iteration and εmin = minπ∈Π

1
N

∑N
i=1 li(π) be the minimal

loss in hindsight after N ≥ i iterations. Then, εregret =
1
N

∑N
i=1 li(πi) − εmin is the average regret of this online

learning program. In addition, we denote the expected loss
of any policy π ∈ Π under its own induced state distribution
as L (π) = Eφ∼dπ,a∗∼π∗(φ) [l (φ, π, a∗)]] and consider π̄ as
the mixed policy that samples the policies {π̂i}Ni=1 uniformly
at the beginning of each trajectory. Using Lemma 1 and
Lemma 2, we can show:

L(π̂i) = Eφ∼dπ̂i ,a∗∼π∗(φ) [l (φ, π̂i, a
∗)]

≤ Eφ∼dπi ,a∗∼π∗(φ) [l (φ, π̂i, a
∗)] +

lmax
2
‖dπi − dπ̂i‖1

≤ Eφ∼dπi ,a∗∼π∗(φ) [l (φ, π̂i, a
∗)] + lmax min (1, Tβi)

= li (π̂i) + lmax min (1, Tβi) .

By further assuming βi is monotonically decreasing and
nβ = arg maxn(βn >

1
T), n ≤ N , we have the following:

min
i∈1:N

L(π̂i) ≤ L(π̄)

=
1

N

N∑
i=1

L(π̂i)

≤ 1

N

N∑
i=1

li(π̂i) +
lmax
N

N∑
i=1

min (1, Tβi)

= εmin + εregret +
lmax
N

nβ + T

N∑
i=nβ+1

βi

 .
Summing over T gives us:

J(π̄) ≤ Tεmin + Tεregret +
T lmax
N

nβ + T

N∑
i=nβ+1

βi

 .
Define βi = (1− α)i−1, in order to have βi ≤ 1

T , we need
(1−α)i−1 ≤ 1

T which gives us i ≤ 1+
log 1

T

log (1−α) . In addition,

note now i = nβ and
∑N
i=nβ+1 βi = (1−α)nβ−(1−α)N

α ≤
1
Tα , continuing the above derivation, we have:

J (π̄) ≤ Tεmin+Tεregret+
T lmax
N

(
1 +

log 1
T

log (1− α)
+

1

α

)
.

Given the fact J (π̂) = mini∈1:N J(π̂i) ≤ J(π̄) and repre-
senting the third term as O(f(T,lmax)

N), we have proved the
theorem.

3) ADAPS: With the assumption that we can treat the
generated trajectories from our model and the additional
data generated based on them as running a learned policy
to sample independent expert trajectories at different states
while performing policy roll-out, we have the following
guarantee of ADAPS. To better understand the following
theorem and proof, we recommend interested readers to read
the proofs of Theorem 2 and 3 first.

Theorem 4: If the surrogate loss l upper bounds the true
cost C, by collecting K trajectories using ADAPS at each
iteration, with probability at least 1−µ, µ ∈ (0, 1), we have
the following guarantee:

J (π̂) ≤ J (π̄) ≤ T ε̂min+T ε̂regret+O

T lmax
√

log 1
µ

KN

 .

Proof: Assuming at the ith iteration, our model gener-
ates K trajectories. These trajectories are independent from
each other since they are generated using different parameters
and at different states during the analysis of an accident.
For the kth trajectory, k ∈ [[1,K]], we can construct an
estimate l̂ik(π̂i) = 1

T

∑T
t=1 li (φikt, π̂i, a

∗
ikt), where π̂i is

the learned policy from data gathered in previous i − 1
iterations. Then, the approximated expected loss l̂i is the
average of these K estimates: l̂i(π̂i) = 1

K

∑K
k=1 l̂ik(π̂i). We

denote ε̂min = minπ∈Π
1
N

∑N
i=1 l̂i(π) as the approximated

minimal loss in hindsight after N iterations, then ε̂regret =
1
N

∑N
i=1 l̂i(π̂i)− ε̂min is the approximated average regret.

Let Yi,k = li(π̂i) − l̂ik(π̂i) and define random vari-
ables XnK+m =

∑n
i=1

∑K
k=1 Yi,k +

∑m
k=1 Yn+1,k, for

n ∈ [[0, N − 1]] and m ∈ [[1,K]]. Consequently, {Xi}NKi=1

form a martingale and |Xi+1 − Xi| ≤ lmax. By Azuma-
Hoeffding’s inequality, with probability at least 1 − µ, we

have 1
KNXKN ≤ lmax

√
2 log 1

µ

KN .
Next, we denote the expected loss of any policy π ∈

Π under its own induced state distribution as L (π) =
Eφ∼dπ,a∗∼π∗(φ) [l (φ, π, a∗)]] and consider π̄ as the mixed
policy that samples the policies {π̂i}Ni=1 uniformly at the
beginning of each trajectory. At each iteration, during the
data collection, we only execute the learned policy instead of
mix it with the expert’s policy, which leads to L(π̂i) = l(π̂i).
Finally, we can show:

min
i∈1:N

L(π̂i) ≤ L(π̄)

=
1

N

N∑
i=1

L(π̂i)

=
1

N

N∑
i=1

li(π̂i)

=
1

KN

N∑
i=1

K∑
k=1

(
l̂ik(π̂i) + Yi,k

)
=

1

KN

N∑
i=1

K∑
k=1

l̂ik(π̂i) +
1

KN
XKN

=
1

N

N∑
i=1

l̂(π̂i) +
1

KN
XKN

≤ 1

N

N∑
i=1

l̂(π̂i) + lmax

√
2 log 1

µ

KN

= ε̂min + ε̂regret + lmax

√
2 log 1

µ

KN
.

Summing over T proves the theorem.

B. Network Specification

All modules within our control mechanism share a sim-
ilar network architecture that combines Long Short-Term
Memory (LSTM) [34] and Convolutional Neural Networks
(CNN) [35]. Each image will first go through a CNN and
then be combined with other images to form a training
sample to go through a LSTM. The number of images of
a training sample is empirically set to 5. We use the many-
to-many mode of LSTM and set the number of hidden units
of the LSTM to 100. The output is the average value of the
output sequence.

The CNN consists of eight layers. The first five are
convolutional layers and the last three are dense layers. The
kernel size is 5×5 in the first three convolutional layers and
3 × 3 in the other two convolutional layers. The first three

Fig. 4. Plotted collision-free trajectories generated by the expert algorithm
for a vehicle traveling on the right lane of a straight road, with an obstacle
in front. Spans 74 trajectories from the first moment the vehicle perceives
the obstacle (green, progressive avoidance) to the last moment the collision
can be avoided (red, sharp avoidance).

convolutional layers have a stride of two while the last two
convolutional layers are non-strided. The filters for the five
convolutional layers are 24, 36, 48, 64, 64, respectively. All
convolutional layers use VALID padding. The three dense
layers have 100, 50, and 10 units, respectively. We use ELU
as the activation function and L2 as the kernel regularizer
set to 0.001 for all layers.

We train our model using Adam [36] with initial learning
rate set to 0.0001. The batch size is 128 and the number of
epochs is 500. For training Detection (a classification task),
we use Softmax for generating the output and categorical
cross entropy as the loss function. For training Following
and Avoidance (regression tasks), we use mean squared error
(MSE) as the loss function. We have also adopted cross-
validation with 90/10 split. The input image data have 220×
66 resolution in RGB channels.

C. Example Expert Trajectories

Figure 4 shows a set of generated trajectories for a
situation where the vehicle had collided with a static obstacle
in front of it after driving on a straight road. As expected,
the trajectories feature sharper turns (red trajectories) as the
starting state tends towards the last moment that the vehicle
can still avoid the obstacle.

D. Learning From Accidents

For the following paragraph, we abusively note sk.x, sk.y
the position coordinates at state sk, and sk.vx, sk.vy the
velocity vector coordinates at state sk. Then, for any state
sk ∈ {skf , ..., ska} we can define a line L(sk) = {lu =
(sk.x, sk.y) + u × (−sk.vy, sk.vx) | u ∈ R}. On this line,
we note li the furthest point on L(sk) from (sk.x, sk.y)
which is at an intersection between L(sk) and a collision-
free trajectory from solve(S). This point determines how
far the vehicle can be expected to stray from the original
trajectory S before the accident, if it followed an arbitrary
trajectory from solve(S). We also note lrl and lrr the two
intersections between L(sk) and the road edges (lrl is on the
“left” with rl > 0, and lrr is on the “right” with rr < 0).
These two points delimit how far from the original trajectory

Fig. 5. (This figure is copied from the main text to here for completeness.)
Illustration of important points and DANGER/SAFE labels from Section VI
for a vehicle traveling on the right lane of a straight road, with an obstacle
in front. Labels are shown for four points {lu1, lu2, lu3, lu4} illustrating
the four possible cases.

the vehicle could be. Finally, we define a user-set margin g
as outlined below (we set g = 0.5 m).

Altogether, these points and margin are the limits of the
region along the original trajectory wherein we generate
images for training: a point lu ∈ L(sk) is inside the region if
it is between the original trajectory and the furthest collision-
free trajectory plus a margin g (if lu and li are on the same
side, i.e. sign(u) = sign(i)), or if it is between the original
trajectory and either road boundary plus a margin g (if lu
and li are not on the same side, i.e. sign(u) 6= sign(i)).

In addition, if a point lu ∈ L(sk) is positioned be-
tween two collision-free trajectories Ŝk1 , Ŝk2 ∈ solve(S),
we consider the two closest states on Ŝk1 , and the two
closest states from Ŝk1 , and bi-linearly interpolate these four
states’ velocity vectors, resulting in an approximate velocity
vector vbilin(lu) at lu. Similarly, if a point lu ∈ L(sk) is
not positioned between two collision-free trajectories, we
consider the two closest states on the single closest collision-
free trajectory Ŝk1 ∈ solve(S), and linearly interpolate their
velocity vectors, resulting in an approximate velocity vector
vlin(lu) at lu.

From here, we can construct images at various points lu
along L(sk) (increasing u by steps of 0.1 m), with various
orientation vectors (noted vu and within 2.5 degrees of
(sk.vx, sk.vy)), and label them using the following scheme
(also illustrated in Figure 5). If the expert algorithm made
the vehicle avoid obstacles by steering left (li with i > 0),
there are four cases to consider when building a point lu:
• u < i + g and u > i: lu is outside of the computed

collision-free trajectories solve(S), on the outside of
the steering computed by the expert algorithm. The
label is SAFE if det(vlin(lu),vu) ≥ 0, and DANGER
otherwise.

• u < i and u > 0: lu is inside the computed
collision-free trajectories solve(S). The label is SAFE
if det(vbilin(lu),vu) ≥ 0 (over-steering), and DAN-
GER otherwise (under-steering).

• u < 0 and u > rr: lu is outside the computed collision-
free trajectories solve(S) on the inside of the steering
computed by the expert algorithm. The label is always
DANGER.

• u < rr and u > rr− g: lu is in an unattainable region,
but we include it to prevent false reactions to similar
(but safe) future situations. The label is DANGER if
det(vlin(lu),vu) > 0, SAFE otherwise.

Here, the function det(·, ·) computes the determinant of two
vectors from R2.

Conversely, if the expert algorithm made the vehicle avoid
obstacles by steering right (li with i < 0), there are four cases
to consider when building a point lu:
• u > i − g and u < i: the label is SAFE if
det(vlin(lu),vu) ≤ 0, and DANGER otherwise.

• u > i and u < 0: the label is SAFE if
det(vbilin(lu),vu) ≤ 0, and DANGER otherwise.

• u > 0 and u < rl: the label is always DANGER.
• u > rl and u < rl + g: the label is DANGER if
det(vlin(lu),vu) < 0, SAFE otherwise.

We then generate images from these (position, orientation,
label) triplets which are used to further train the Detection
module of our policy.

E. Experiment Setup

1) Scenarios: We have tested our method in three sce-
narios. The first is a straight road which represents a linear
geometry, the second is a curved road which represents a
non-linear geometry, and the third is an open ground. The
first two represent on-road situations while the last represents
an off-road situation.

Both the straight and curved roads consist of two lanes.
The width of each lane is 3.75 m and there is a 3 m shoulder
on each side of the road. The curved road is half circular
with radius at 50 m and is attached to two straight roads
at each end. The open scenario is a 1000 m × 1000 m
ground, which has a green sphere treated as the target for
the Following module to steer the AV.

2) Vehicle Specs: The vehicle’s speed is set to 20 m/s,
which value is used to compute the throttle value in the
simulator. Due to factors such as the rendering complexity
and the delay of the communication module, the actual
running speed is in the range of 20±1 m/s. The length and
width of the vehicle are 4.5 m and 2.5 m, respectively. The
distance between the rear axis and the rear of the vehicle is
0.75 m. The front wheels can turn up to 25 degrees in either
direction. We have three front-facing cameras set behind the
main windshield, which are at 1.2 m height and 1 m front to
the center of the vehicle. The two side cameras (one at left
and one at right) are set to be 0.8 m away from the vehicle’s
center axis. These two cameras are only used to capture data
for training Following. During runtime, our control policy
only requires images from the center camera to operate.

3) Obstacles: For the on-road scenarios, we use a scaled
version of a virtual traffic cone as the obstacle on both the
straight and curved roads. This scaling operation is meant to
preserve the obstacle’s visibility, since at distances greater
than 30m a normal-sized obstacle is quickly reduced to just a
few pixels. This is an intrinsic limitation of the single-camera
setup (and its resolution), but in reality we can emulate this
“scaling” using the camera’s zoom function for instance.

For the off-road scenario, we use a vehicle with the same
specifications as of the AV as the dynamic obstacle. This
vehicle is scripted to collide into the AV on its default course
when no avoidance behavior is applied by the AV.

4) Training Data: In order to train Following, we have
built a waypoint system on the straight road and curved road
for the AV to follow, respectively. By running the vehicle
for roughly equal distances on both roads, we have gathered
in total 65 061 images (33 642 images for the straight road
and 31 419 images for the curved road). On the open ground,
we have sampled 30 000 positions and computed the angle
difference between the direction towards the sphere target
and the forward direction. This gives us 30 000 training
examples.

In order to train Avoidance, on the straight road, we rewind
the accident by 74 frames starting from the frame that the
accident takes place, which gives us 74 safe trajectories.
On the curved road, we rewind the accident by 40 frames
resulting in 40 safe trajectories. On the open ground, we
rewind the accident by 46 frames resulting in 46 safe
trajectories. By positioning the vehicle on these trajectories
and capturing the image from the front-facing camera, we
have collected 34 516 images for the straight road, 33 624
images for the curved road, and 33 741 images for the open
ground.

For the training of Detection, using the mechanism ex-
plained in Subsection VI-B, we have collected 32 538 images
for the straight road, 71 859 for the curved road, and 67 102
images for the open ground.

	I Introduction
	II Related Work
	III Preliminaries
	III-A Notation and Definitions
	III-B Existing Techniques

	IV ADAPS
	IV-A Theoretical Analysis
	IV-B Framework Pipeline

	V Policy Learning
	V-A End-to-end Imitation Learning
	V-B Training Data Collection

	VI Learning from Accidents
	VI-A Solving Accidents
	VI-B Additional Data Coverage

	VII Experiments
	VII-A Control Policy
	VII-A.1 On-road
	VII-A.2 Off-road

	VII-B Algorithm Efficiency

	VIII Conclusion
	References
	IX Appendix
	IX-A Solving An SPC Task
	IX-A.1 Supervised Learning
	IX-A.2 DAGGER
	IX-A.3 ADAPS

	IX-B Network Specification
	IX-C Example Expert Trajectories
	IX-D Learning From Accidents
	IX-E Experiment Setup
	IX-E.1 Scenarios
	IX-E.2 Vehicle Specs
	IX-E.3 Obstacles
	IX-E.4 Training Data

