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S
ince the first autonomous driving competition host-
ed by DARPA in 2005 [1], autonomous vehicles (AVs) 
have attracted extensive attention from both aca-
demia and industry. With the recent advancements 

in sensing as well as machine learning, the research and 
development of autonomous driving have achieved tre-
mendous progress.

There are two main approaches to achieve autonomous 
driving. The first is the end-to-end approach that directly 
maps raw sensor data to control commands using a single 
model—commonly one or more neural networks [2]–[5]. 
The second is the traditional engineering approach [6], [7] 
that involves multiple modules such as detection, track-
ing, prediction, and planning. While both approaches have 
merits and drawbacks—as the safety of AVs is the leading 
concern—the traditional engineering approach is likely to 
prevail in the near future because of its better model inter-
pretability and controllability.

One crucial task of the traditional engineering ap-
proach is to predict the trajectories of vehicles surrounding 
the AV—information that is required to achieve safe and ro-
bust driving. In this article, we focus on vehicle trajectory 
prediction on highways, where the dominant traffic par-
ticipants are cars and trucks. We refer to the vehicle whose 
trajectory is being predicted as the target vehicle and the 
surrounding vehicles of the target vehicle as neighbor-
ing vehicles.

Among the many techniques for predicting vehicle 
trajectories, recurrent neural networks (RNNs) have of-
fered state-of-the-art performance [8]–[12]. RNNs take the 
historical trajectory data of the target vehicle as the in-
put and predict its trajectory over a certain time horizon. 
RNNs are particularly effective because they consider 
both the local information among vehicles (e.g., instan-

taneous interactions between the target vehicle and its 
leading vehicle) and the long-term dependencies stored 
in memory cells [8], [9].

While RNNs are effective in prediction, they offer lim-
ited model explainability. In particular, how the long-term 
information embedded in historical trajectories [8], [9] and 
the information of neighboring vehicles [11], [12] impact 
prediction is left unexplored. In this article, we aim to an-
swer the following questions: Which part of the historical 
trajectories of the target vehicle or neighboring vehicles 
determines the future motion of the target vehicle? Which 
neighboring vehicles influence the target vehicle more? 
Where would these neighboring vehicles be? Answering 
these questions from the temporal–spatial perspective can 
help us better understand a driver’s decision-making pro-
cess, identify various driving styles, design realistic traffic 
simulation models, and ultimately assist in developing safe 
and efficient autonomous driving.

In an effort to address these questions, we propose the 
spatiotemporal attention long short-term memory (STA-
LSTM), an LSTM model with spatial–temporal attention 
mechanisms for explainability in vehicle trajectory pre-
diction. STA-LSTM not only achieves comparable predic-
tion accuracy to other state-of-the-art techniques but also 
explains the influence of historical trajectories and neigh-
boring vehicles on the target vehicle via attention weights. 
STA-LSTM is learned and evaluated using the Next Gen-
eration Simulation (NGSIM) data set [13]. 

We provide in-depth analyses of the learned attention 
weights in scenarios that contain different sets of vehi-
cles and environmental factors, including target vehicle 
classes (e.g., cars and trucks), target vehicle locations, and 
neighboring vehicle densities. We also analyze the atten-
tion weights associated with specific driving behaviors 

Abstract—Accurate vehicle trajectory prediction can benefit a variety of intelligent transportation 
system applications ranging from traffic simulations to driver assistance. The need for this ability is 
pronounced with the emergence of autonomous vehicles as they require the prediction of nearby ve-
hicles’ trajectories to navigate safely and efficiently. Recent studies based on deep learning have great-
ly improved prediction accuracy. However, one prominent issue of these models is the lack of model 
explainability. We alleviate this issue by proposing spatiotemporal attention long short-term memory 
(STA-LSTM), an LSTM model with spatial-temporal attention mechanisms for explainability in vehicle 
trajectory prediction. STA-LSTM not only achieves comparable prediction performance against oth-
er state-of-the-art models but, more importantly, explains the influence of historical trajectories and 
neighboring vehicles on the target vehicle. We provide in-depth analyses of the learned spatial–tempo-
ral attention weights in various highway scenarios based on different vehicle and environment factors, 
including target vehicle class, target vehicle location, and traffic density. A demonstration illustrating 
that STA-LSTM can capture and explain fine-grained lane-changing behaviors is also provided. The 
data and implementation of STA-LSTM can be found at https://github.com/leilin-research/VTP.
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of the target vehicle and find that 
the learned attention weights can 
be used to interpret the target ve-
hicle’s lane-changing behaviors. 
The data and implementation of 
STA-LSTM can be found at https://
github.com/leilin-research/VTP. 
In summary, the main contribu-
tions of this work are as follows:

■■ STA-LSTM, an LSTM model 
with spatial–temporal attention mechanisms, is de-
veloped for predicting vehicle trajectories.

■■ The proposed attention mechanisms at the temporal 
level can identify important historical trajectories for 
determining future behaviors of the target vehicle.

■■ The proposed attention mechanisms at the spatial 
level can rank neighboring vehicles in terms of their 
influences on the target vehicle.

■■ In-depth analyses of the learned attention weights in 
traffic scenarios with various vehicle and environ-
ment factors are provided.

■■ Specific driving behaviors of the target vehicle 
through the learned attention weights are analyzed. 
In particular, lane-changing behaviors of the target 
vehicle are found to be explainable through the at-
tention weights.

Related Work

Vehicle Trajectory Prediction Using Traditional Methods
Conventionally, three types of approaches exist for vehicle 
trajectory prediction: physics-based, maneuver-based, and 
interaction-aware [14]. Physics-based methods usually con-
sider vehicle kinematic and dynamic constraints, such as 
yaw rate and acceleration rate, and environmental factors, 
such as the friction coefficient of a road surface. While this 
approach can achieve short-term (<1 s) motion prediction, 
it is incapable of predicting motion changes due to certain 
maneuvers (e.g., sudden slowing down) or interactions with 
neighboring vehicles (e.g., braking for the leading vehicle).

Maneuver-based methods can compensate for physics-
based methods by using drivers’ maneuvers (e.g., go straight 
or turn left or right) in predicting vehicle trajectories. To 
list some examples, Mandalia et al. [15] use support vector 
machines to infer driver intentions with a focus on lane-
changing decisions. Schreier et al. [16] propose a Bayes-
ian method to predict long-term vehicle trajectories and 
provide a criticality assessment of the prediction results. 
Tomar et al. [17] adopt multilayer perceptrons to forecast 
vehicle trajectories during lane changing.

Most physics-based and maneuver-based approaches do 
not account for interactions among vehicles. This has mo-
tivated the development of interaction-aware methods that 
take into account the interdependencies of vehicle maneu-

vers for trajectory prediction. To provide a few examples, Gin-
dele et al. [18] model the mutual influence between vehicles 
using factored states in prediction. Lefèvre et al. [19] study 
the joint motion and conflicting intentions of vehicles while 
assessing the operation risk of a vehicle at the intersection.

Vehicle Trajectory Prediction Using Deep Learning
A number of studies have applied deep learning—especially 
RNN and its variant, LSTM—for vehicle trajectory prediction 
[8]–[12], [20]. For example, Deo and Trivedi [11] use a con-
volutional social pooling network combined with LSTMs to 
predict vehicle trajectories on highways. Altché and de La 
Fortelle [12] apply LSTMs to predicting the longitudinal veloc-
ity of a vehicle on a highway segment by taking the trajecto-
ries of its nine surrounding vehicles into account. Lee et al. 
[21] propose a deep stochastic inverse optimal control RNN 
encoder–decoder framework to predict the trajectories of 
interacting road users in dynamic scenes. Kim et al. [22] pro-
pose an LSTM-based trajectory prediction approach using an 
occupancy grid map to characterize a driving environment.

Attention Mechanisms
Attention mechanisms proposed by Bahdanau et al. [23] 
can be naturally integrated with RNN to improve the mod-
el explainability. For example, Zhou et al. [24] propose an 
attention-based bidirectional LSTM model to capture key 
semantic information for relation classification in natural 
language processing. Lin et al. [25] apply an LSTM model 
with attention mechanisms to address time series for ex-
plainable disease classification.

Attention mechanisms have been used in pedestrian 
trajectory prediction. Fernando et al. [26] equip LSTMs 
with soft and hard attention mechanisms to predict the pe-
destrian trajectory. The soft attention mechanism focuses 
on the target pedestrian while the hard attention mecha-
nism focuses on neighboring pedestrians. Nevertheless, 
this method does not capture the interactions between the 
target pedestrian and neighboring pedestrians. Zhang et al. 
[27] also propose an attention mechanism for pedestrian 
trajectory prediction. Their method enables the interpre-
tation of the neighboring pedestrians’ effect on the target 
pedestrian at the spatial level. To the best of our knowledge, 
our technique is among the few that apply LSTMs with spa-
tiotemporal attention mechanisms at both the spatial level 
and the temporal level for vehicle trajectory prediction.

One crucial task of the traditional engineering approach is to 
predict the trajectories of vehicles surrounding the AV—
information that is required to achieve safe and robust driving.
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Methodology
Following the same setting proposed by Deo and Trivedi 
[11], we first discretize the space centered around the tar-
get vehicle into a 3 × 13 grid. The rows represent the left, 
current, and right lanes with respect to the target vehicle’s 
location. The columns represent the discretized grid cells 
with a width of 4.6 m (15 feet) each.

Vehicles that are located inside the 3 × 13 grid (except 
the target vehicle) are considered neighboring vehicles. 
Each neighboring vehicle is assigned to a unique grid cell 
using its front bumper position. For example, a neighbor-
ing vehicle located 11 m in front of the target vehicle will be 
assigned to the third cell / .3 11 4 6=^ h^ h  ahead of the target 
vehicle’s cell.

The inputs to our STA-LSTM model are the T -step his-
torical trajectories of all of the vehicles within the 3 × 13 grid. 
Each vehicle’s trajectory is processed by its corresponding 
LSTM model. The output is an H -step predicted trajectory 
of the target vehicle. During this process, both temporal-
level and spatial-level attention weights are learned. The 
temporal-level attention weights can be used to analyze the 
influence of historical trajectories from both the target and 
neighboring vehicles on prediction. The spatial-level atten-
tion weights can be used to explain the influence of neigh-
boring vehicles on prediction. Next, we introduce how these 
attention weights are computed.

Temporal-Level Attention Calculation
At t i me step ,t  t he T -s tep h istor ica l t rajec tor y 
{ , , }X Xt T

v
t
v

1 f- +  of vehicle v  (v  can be either the target ve-
hicle or a neighboring vehicle) is taken as the input to an 
LSTM model. Consider the hidden states of the LSTM mod-
el { , , , , }, , ,S h h h S hR Rt

v
t T
v

j
v

t
v

t
v d T

j
v d
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1f f ! != # #

- +  where 
d  is the hidden state length. After these hidden states are 
generated, the temporal attention weights associated with 
v , { , , , , },At
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t
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1 f fa a a= - +  are computed as follows:
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where Wa  represents learnable weights.
Next, we combine the hidden states St

v  and temporal at-
tention weights At
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Collectively, all tensor-cell values are adopted to com-
pute the spatial-level attention weights and predict the tar-
get vehicle’s trajectory.

Spatial-Level Attention Calculation
We can represent all tensor-cell values at t  as { , , ,G G Gt t t

n1 f=  
}, ,,G G GR Rt

N
t

d N
t
n d 1f ! !# # , where N  represents the total 

number of tensor cells (i.e., 39). Gt
n  takes the following form:

	
, if any vehicle locates at grid cell ,

, otherwise.
 G

H v n
0 R

t
n t

v

d 1!
= #' � (3)

Then, the spatial-level attention weights associated 
with all vehicles at t , { , , , , }, ,B B Rt t t

n
t
N

t
N1 1f f !b b b= #  are 

calculated as follows:

	  ( ( )), ,soft tanhmaxB W G W Rt t
d1!= #

b b � (4)

where Wb  represents learnable weights. Finally, we com-
bine all of the historical information from the target and 
neighboring vehicles as follows:

	 ( ) .V G B Gt t t
T

t
n

n

N

t
n

1
b= =

=

/ � (5)

Vt  is then fed into a feedforward network to predict the 
H -step trajectory of the target vehicle { , , }X Xtarget target

t t H1 f+ +
t t . 

The whole process along with the architecture of our STA-
LSTM model is illustrated in Figure 1.

Experiments

Data Introduction and Model Setup
STA-LSTM is learned and evaluated using the NGSIM data 
set [13]. The data set consists of vehicle trajectories from 
the segments of U.S. Highway 101 (US-101) and Interstate 
80 (I-80) in the United States. The US-101 segment has a 
length of 482 m (0.3 mi) and five lanes. The I-80 segment 
has a length of 644 m (0.4 mi) and six lanes. The data from 
either US-101 or I-80 contain vehicle trajectories sampled 
at 10 Hz for 45 min. Each 45-min data set consists of three 
15-min subsets recorded over different time spans. This 
gives us in total six 15-min trajectory subsets for learning 
and testing STA-LSTM. Since these trajectory data are col-
lected on highways, they contain only forward-moving and 
lane-changing behaviors. We split each of the six 15-min 
trajectory subsets into training, validation, and test data 
sets as 0.7:0.1:0.2. As a result, the training, validation, and 
test data set have 5,922,867, 859,769, and 1,505,756 entries, 
respectively. No extra preprocessing (e.g., normalization) 
is applied to the data set.

To compare our model with the state-of-the-art convo-
lutional social (CS)-LSTM model by Deo and Trivedi [11], 
we follow the same data processing procedures as theirs. 
Specifically, we first downsample each vehicle trajectory 
by a factor of 2. Second, based on the vehicle coordinate 
( , ),x y  where the y -axis represents the motion direction of 
the highway, we discretize the space centered around the 
target vehicle as a 3 × 13 grid.

We choose the time step to be 0.2 s. Fifteen-step (i.e.,  
3 s, T  = 15) historical trajectories of the target and its neigh-
boring vehicles (denoted by v) within the 3 × 13 grid, e.g., 
{ , , , , }X X Xt T

v
j
v

t
v

1 f f- +  in Figure 1 [ , ] ,X x yj
v

j
v

j
v=^ h  are taken 

as the inputs to STA-LSTM for predicting the five-step 
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(i.e., 1 s, H  = 5) future trajectory of 
the target vehicle.

The goal of STA-LSTM is to min-
imize the following cost function:

    ( ) ,min N X X1
train

j
i

j
i

j

H

i

N
2

11

train

-
==

t//     (6)

where Ntrain  denotes the training 
set; [ , ]X x yj

i
j
i

j
i=t t t  is the predicted 

position at the thj  time step; and 
[ , ]X x yj

i
j
i

j
i=  is the actual position at 

the thj  time step.
The hyperparameters of STA-LSTM are optimized us-

ing a grid search. The dimension of the embedding space 
is set to 32. The dimension of the hidden vector of the 
LSTM model is set to 64. The feedforward layer contains 
one hidden layer with a dimension of 128. The optimization 
method Adam [28] is chosen with the learning rate of 0.001. 
The number of training epochs is set to 10. All experiments 
are conducted using an Intel(R) Xeon(TM) W-2123 CPU, an 
Nvidia GTX 1080 GPU, and 32 G RAM. The total training 
time of STA-LSTM is around 5 h.

Prediction Accuracy Comparison
To evaluate STA-LSTM, we implement four benchmark mod-
els. The first is CS-LSTM [11], which offers state-of-the-art 
performance on vehicle trajectory prediction. The second is 
an LSTM model trained solely using the target vehicle’s his-
torical trajectories. We refer to this model as naïve LSTM, the 
goal of which is to test whether the historical trajectories of 
neighboring vehicles can be used to improve the prediction 
accuracy. The third is an LSTM model with only the spatial-
level attention mechanism [29]: the last hidden state, which 
contains the most recent trajectory information, is selected 
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FIG 1 The schematic view of our approach and the architecture of STA-LSTM. The input to STA-LSTM are the T-step historical trajectories of all of the 
vehicles within the 3 × 13 grid centered around the target vehicle. Each trajectory is processed by an LSTM model. An example at time step t involving 
vehicle v is shown (v can be either the target vehicle or a neighboring vehicle). The trajectory { , , }X Xt T

v
t
v

1 f- +  is used to generate the hidden states 
{ , , },h ht T

v
t
v

1 f- +  which are then used to compute the temporal-level attention weights associated with each vehicle, denoted by At
v . Next, { , , }h ht T

v
t
v

1 f- +  
are combined with At

v  to derive a cell value of the 3 × 13 tensor denoted by Ht
v . After filling the tensor with either Ht

v  (has a vehicle) or 0 (no vehicle), we 
compute the spatial-level attention weights associated with all vehicles Bt  and predict the H-step trajectory of the target vehicle { , , }X Xtarget target

t t H1 f+ +
t t . Note 

that each vehicle is assigned to a unique grid cell using the front bumper position.

STA-LSTM not only achieves comparable prediction accuracy 
to other state-of-the-art techniques but also explains the 
influence of historical trajectories and neighboring vehicles  
on the target vehicle via attention weights.
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to form the spatial-level attention layer and fuse information 
from both the target and neighboring vehicles. We refer to 
this model as SA-LSTM, the goal of which is to test whether 
including temporal-level attention (in addition to spatial-level 
attention) will affect the prediction result. The training time 
of SA-LSTM and CS-LSTM are similar to STA-LSTM (i.e., 5 h). 
The training time of naïve LSTM is around 3 h since it does 
not build LSTMs for neighboring vehicles. 

Note that because our data set is missing the kinematic 
and dynamic constraints of the contained heterogeneous 
traffic and physics-related environmental factors, such as 
the road’s friction coefficient, it is impractical to implement 
a complex physics-based model for comparison. Neverthe-
less, since physics-based models can be used in prediction 
over a short time horizon, for completeness, we build a 
simple physics-based model to predict the target vehicle’s 
trajectory by extrapolating the historical trajectory under 
constant longitudinal and lateral speeds.

We measure the performance using the root-mean-
square error (RMSE) between the predicted and actual po-
sitions of the target vehicle for five time steps at 0.2 s/step.  
The results are displayed in Table 1. The physics-based 
model performs the worst among all models. STA-LSTM 
performs slightly better than CS-LSTM across all time 
steps. SA-LSTM performs a little worse than STA-LSTM 
and CS-LSTM. The naïve LSTM, which relies solely on 
the information of the target vehicle, has the worst perfor-
mance among the learning-based models. These results 
indicate that 1) it is helpful to consider the information of 
neighboring vehicles for vehicle trajectory prediction; 2) it 
might be sufficient to use the most recent trajectories for 
prediction; and 3) computing the spatial–temporal atten-
tion will not affect the prediction accuracy. Although our 
STA-LSTM model does not improve the prediction accura-
cy of CS-LSTM significantly, the learned spatial–temporal 
attention weights provide interpretability on the predic-
tion results.

Attention Weights Analysis

Temporal-Level Attention
We start by analyzing the temporal-level attention mecha-
nism. We compute the temporal-level attention weights of 
15 historical time steps (from t 14-  to t ) using each of 
the six 15-min subsets. Figure 2 illustrates the averaged 
weights from t 5-  to .t  The weights before t 5-  are omit-
ted as they are negligible. The attention weights at the 
current time step t  are the largest. This indicates that the 
future trajectory of the target vehicle is mainly influenced 
by the most recent trajectories of itself and the neighbor-
ing vehicles. This result also explains why SA-LSTM, 
which includes the spatial-level but not the temporal-lev-
el attention mechanism, performs only moderately worse 
than STA-LSTM.

Spatial-Level Attention by Vehicle Class
We next analyze the spatial-level attention mechanism. 
For convenience, we label each grid cell by its lane name 
and relative order to the target vehicle’s cell. For example, 
( , )Current 6  represents the sixth grid cell in the current 
lane and ahead of the target vehicle’s cell.

Our analysis is based on two main target vehicle types 
in the NGSIM data set: autos and trucks. The target vehi-
cle’s cell has the largest attention weight: 72.14% for au-
tos and 79.53% for trucks. This result, combined with the 
previous temporal-level attention analysis, reveals that the 
future trajectory of the target vehicle largely depends on its 
own driving status. The larger influence of a truck on itself 
may be because the truck needs a longer time to react to 
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FIG 2 The averaged temporal-level attention weights of six time steps 
computed using each of the six 15-min subsets. The weights before t –  5 
are omitted as they are negligible. The weights at the current time step t 
are the largest. This indicates that the future trajectory of the target 
vehicle is mainly impacted by the most recent trajectories of itself and its 
neighboring vehicles. In addition, this explains why, by excluding 
temporal-level attention mechanisms, the performance of SA-LSTM 
drops only moderately compared to STA-LSTM.

RMSE Per Prediction Time Step (0.2 s)

Models 1st 2nd 3rd 4th 5th 

Physics-based 
model

0.1776 0.3852 0.6033 0.8377 1.0888

Naïve LSTM 0.1012 0.2093 0.3384 0.4830 0.6406

SA-LSTM 0.1026 0.2031 0.3157 0.4367 0.5643

CS-LSTM [11] 0.1029 0.2023 0.3146 0.4364 0.5674

STA-LSTM 
(Ours) 

0.0995 0.2002 0.3130 0.4348 0.5615

Table 1. A Comparison of our model and four benchmark  
models using RMSE.
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neighboring vehicles. So, its own trajectory plays a heavier 
role in trajectory prediction. In contrast, an auto is more 
flexible and can react faster to its neighboring vehicles by 
altering its trajectory.

To better depict the distribution of attention weights of 
neighboring vehicles, we normalize and plot the rest of the 
attention for autos (27.86%) and trucks (20.47%) on the 
3 × 13 grid. These results are found in Figure 3(a) and (b). 
The grid cells behind the target vehicle’s cell receive virtu-
ally no attention, indicating the negligible influence of fol-
lowing vehicles on the target vehicle. This may be because 
drivers pay much less attention to following vehicles.

We further observe that when the target vehicle is an auto, 
all front grid cells on the current lane receive attention weights. 
The grid cells receiving larger values are (Current, 2), (Cur-
rent, 3), and ( , )Current 4 . When the target vehicle is a truck, 
the larger weights are found at (Current, 3), (Current, 4), and 
(Current, 5), while (Current, 1) and (Current, 2) receive less 
weight compared to an auto. This may be because the truck  
usually keeps a longer distance from the front vehicle to 
maintain safety and subsequently pays more attention to 
front vehicles at a further distance. To verify our hypothe-
sis, we calculate the distance from the front bumper of the 
target vehicle to the back bumper of the front vehicle by ve-
hicle type. The statistics are displayed in Table 2. We can 
observe that a truck keeps a longer distance to its front ve-
hicle compared to an auto. This explains why (Current, 1)  
and (Current, 2) of the truck receive fewer weights com-
pared to the auto, as illustrated in Figure 3.

Spatial-Level Attention by Neighboring Vehicle Density
The NGSIM data set records vehicle trajectories under dif-
ferent traffic conditions. So, it is possible to explore the in-
fluence of neighboring vehicle densities on the distribution 
of spatial-level attention weights.

Because the average number of neighboring vehicles 
within the 3 × 13 grid is computed as seven, we consider two 
neighboring vehicle densities: 7#  and >7. The results are il-
lustrated in Figure 4. When the number is >7, i.e., more con-
gested traffic, the weight of the target vehicle’s cell decreases 
from 75 to 68%, demonstrating the gain of the influence from 
neighboring vehicles. When the number of neighboring ve-
hicles is 7# , among the neighboring vehicles, the largest at-
tention weight appears at (Current, 4). In contrast, when the 
number is >7, (Current, 2) has the largest attention weight. 
This may be because when congestion develops, the target 
vehicle is closer to the front vehicle.

Front Vehicle Type 

Target Vehicle Type Auto Truck 

Auto 10.54 ± 5.32 (m) 8.14 ± 4.64 (m)

Truck 12.70 ± 5.42 (m) 14.57 ± 3.80 (m)

Table 2. The statistics of the distance from the front bumper  
of the target vehicle to the back bumper of the front vehicle  
in our data set.

(a)

(b)

0% 0% 0% 0% 0% 0% 0% 1.71% 2.3% 2.26% 2.15% 1.95% 1.16%

1.01% 1.34% 1.42% 1.59% 1.6% 1.64% 1.67% 2.95% 3.54% 3.03% 3.12% 3.1% 1.78%

0% 0% 0% 0% 0% 0% 1.79% 7.18% 10.63% 11.22% 10.18% 5.69%

0% 0% 0% 0% 0% 0% 0% 2.19% 2.98% 3.06% 2.8% 2.67% 1.66%

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6

0% 0% 0% 0% 0% 0% 2.46% 13.29% 16.77% 14.68% 11.34% 5.03%

0% 0% 0% 0% 1.01% 1.05% 1.06% 1.66% 2.21% 2.17% 2.07% 1.87% 1.08%

Grid Cell OrderLane

Right

Current

Left

Right

Current

Left

FIG 3 The distributions of spatial-level attention weights by target vehicle class (excluding weights in the target vehicle’s cell) for (a) autos and (b) trucks. 
For all cases, cells behind the target vehicle’s cell receive virtually no attention weights, showing the negligible influence of vehicles in the back of the target 
vehicle. For the auto, the largest weights appear at (Current, 2), (Current, 3), and (Current, 4). For the truck, the largest weights appear at (Current, 3), 
(Current, 4), and (Current, 5), while (Current, 1) and (Current, 2) receive fewer weights compared to the auto class. This discrepancy may be because the 
truck often maintains a longer distance from the front vehicle for safety concerns, thus focusing on front vehicles at a further distance. Note that we use 
vehicles’ front bumper positions to compute their belonging cells, and one vehicle contributes only to one cell.
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Spatial-Level Attention by Location
In the NGSIM data set, the study segment of US-101 con-
sists of five lanes, and the segment of I-80 contains six 
lanes. Each segment contains one additional ramp lane. 
These configurations allow us to analyze the distribution 
of the maximum spatial-level attention weight (of neigh-
boring vehicles), especially when the target vehicle is in 
different lanes.

Here, we use the case of US-101 as an example. We se-
lect four lanes from US-101 southbound: the innermost 
lane, middle lane, outermost lane, and ramp segment. 
These lanes are shown in Figure 5(a). Figure 5(b) portrays 
grid cells with the frequency counts—each count indicates 
that one maximum spatial-level attention weight regard-
ing a neighboring vehicle was assigned to this cell.

As we can see from Figure 5(b), target vehicles mainly 
focus on front vehicles in the current lane. An exception is 
the ramp segment, where target vehicles pay more atten-
tion to front vehicles in the left lane, indicating their inten-
tion to switch to it. Target vehicles in the outermost lane 
also pay more attention to the lane on the left compared 
to the lane on the right, showing the preference to change 
to the left rather than right. In contrast, a reverse pattern 

is found on the innermost lane, 
where target vehicles pay more at-
tention to front vehicles in the right 
lane in addition to the current lane. 
Target vehicles in the middle lane 
indicate smaller differences in at-
tention distribution between the 
left and right lanes. These results 
demonstrate that STA-LSTM can be 

used to capture driving attentions, including staying in the 
same lane and switching lanes. Next, we show that STA-
LSTM can identify the moment when specific lane-chang-
ing behaviors take place.

Spatial-Level Attention on Lane-Changing Behaviors
To study whether spatial-level attention weights can ex-
plain specific driving behaviors such as lane changing, we 
have selected the vehicle with ID 2858 as the study subject, 
which conducted two lane-changing maneuvers on I-80.

The target vehicle 2858 executes the first lane-chang-
ing maneuver around the 996th time step from lane 4 to 
5 and the second lane-changing maneuver around the 
1,220th time step from lane 5 to 6. This is illustrated in 
Figure 6. In addition, we show the grid cells containing 
neighboring vehicles that receive the largest attention 
weight at each time step during this process in Figure 6. We 
observe that the target vehicle (i.e., vehicle 2858) mainly 
focuses on front vehicles in the current lane for the first 
977 time steps. From the 978th to the 996th time step, it 
gradually relocates the maximum attention from the cur-
rent lane to (Right, 1) and then (Right, 2) as it prepares to 
change to the right lane. The maximum attention weight 

Attention
Distribution

Target
Vehicle Cell

Neighboring
Vehicle Cells

Neighboring
Vehicle Cells

Target
Vehicle Cell

75%

68%

25%

32%

Lane

Right

Current

Left

Right

Current

Left

0% 0% 0% 0% 0% 0% 0% 2.09% 3.05% 3.07% 2.8% 2.35% 1.37%

0% 0% 0% 0% 0% 1.02% 1.05% 1.47% 1.76% 1.62% 1.65% 1.62% 0%

0% 0% 0% 0% 0% 0% 3.86% 19.64%17.58% 13% 10.76% 5.08%

0% 0% 0% 0% 0% 0% 0% 1.39% 1.64% 1.53% 1.58% 1.61% 0%

0% 0% 0% 0% 0% 0% 0% 6.27% 15.58%16.27%11.87% 4.99%

0% 0% 1% 1.07% 1.09% 1.11% 1.1% 1.92% 2.75% 2.79% 2.55% 2.19% 1.31%

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6
Grid Cell Order

(a)

(b)

FIG 4 The averaged spatial-level attention weights by vehicle density. (a) Less congested traffic, with the number of neighboring vehicles 7#  and (b) 
more congested traffic, with the number of neighboring vehicles >7. As congestion develops, the attention weight of the target vehicle’s cell decreases 
from 75 to 68%, indicating that the neighboring vehicles have more influence on the target vehicle in a congested environment. By normalizing and 
plotting the attention weights of neighboring vehicles, we can see that the largest attention weight is located at (Current, 4) in (a) and at (Current, 2)  
in (b), which may be caused by the shortened distance between the target vehicle and its leading vehicle.

These results demonstrate that STA-LSTM can be used to 
capture driving attentions, including staying in the same lane 
and switching lanes.
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0 0 0 0 0 0 0 0.09 0.42 0.53 0.49 0.49 0.21

0 0.11 0.15 0.16 0.17 0.16 0.21 0.69 1.87 1.8 1.59 1.04 0.38

0 0 0 0 0 0 0.05 0.12 0.27 0.49 0.65 0.3

0.01 0.18 0.24 0.27 0.02 0.01 0.54 12.45 29.34 28.2 20.75 6.8

0 0.03 0.04 0.01 0.09 0.03 1.57 15.04 33.83 34.57 21.52 7.42

0 0 0 0 0 0 2.32 5.34 5.65 4.46 2.88 0.76
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FIG 5 The maximum spatial-level attention weight frequency by target vehicle location. (a) Four lanes are selected from US-101 southbound. (Source: 
Google Maps.) (b) Grid cells are filled with frequency counts (# 1,000) that indicate the locations of the maximum spatial-level attention weights. Except 
for the ramp segment, target vehicles mainly focus on the current lane. On the ramp segment, the target vehicles pay more attention to the left lane, 
illustrating their intention to switch to it. The frequency distribution on the other lanes can be interpreted in a similar manner. These results demonstrate 
that STA-LSTM can capture various driving intentions, such as staying in the same lane and switching lanes. 
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shifts from the current lane to the right lane again at the 
1,183th time step and stays mostly at (Right, 1) and (Right, 2)  
until the 1,220th time step. The duration of the maximum 
attention weight shift indicates that the first lane changing 
takes 3.8 s ( .19 0 2# ), and the second lane changing takes 
7.6 s . .38 0 2#^ h

To verify whether STA-LSTM 
can capture lane-changing be-
haviors correctly with attention 
weights, the trajectories of vehicle 
2858 and its neighboring vehicles 
are examined. There is a neighbor-
ing vehicle with ID 2846 at (Right, 
0) at the 964th time step, and no 
other neighboring vehicles are be-
hind vehicle 2846 at the time. Vehi-
cle 2858 first slows down from the 
964th to the 967th time step, when 

the relative position of vehicle 2846 changes from (Right, 
0) to (Right, 1). The speed of vehicle 2858 keeps decreas-
ing from the 968th to the 983th time step until the relative 
position of the neighboring vehicle 2846 changes to (Right, 
2). The target vehicle 2858 then starts increasing its speed 
while maintaining the relative position of vehicle 2846 at 

(Right, 2) before finally changing to 
the right lane at the 996th time step. 
A similar pattern is observed during 
the second lane-changing maneu-
ver. These results demonstrate that 
STA-LSTM is capable of capturing 
complex lane-changing maneuvers 
in detail.

Conclusion
Vehicle trajectory prediction is an 
essential task for many intelligent 
t ranspor tat ion system ( ITS) ap-
plications. The importance of this 
task is emphasized with the emer-
gence of AVS as they require an in-
terpretable prediction of the future 
motions of surrounding vehicles to 
navigate safely and efficiently. We 
propose STA-LSTM by integrating 
LSTMs with spatial–temporal atten-
tion mechanisms for explainability 
in vehicle trajectory prediction.

STA-LSTM is learned and evalu-
ated using the NGSIM data set [13], 
which contains real-world vehicle 
trajectories from the segments of US-
101 and I-80 in the United States. Our 
experiment results indicate that STA-
LSTM not only achieves performance 
comparable to other state-of-the-art 
techniques in prediction accuracy 
but, more importantly, provides spa-
tial–temporal attention weights for 
enhancing model explainability. The 
learned attention weights can be used 

Our experiment results indicate that STA-LSTM not only 
achieves performance comparable to other state-of-the-art 
techniques in prediction accuracy but, more importantly, 
provides spatial-temporal attention weights for enhancing model 
explainability. 
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FIG 6 The maximum spatial-level attention weights regarding the lane-changing behaviors of the target 
vehicle 2858. Two lane-changing maneuvers are executed: one at the 996th time step and the other at 
the 1,220th time step. Prior to the first lane changing, the target vehicle mainly focuses on the front 
vehicles in the current lane. During the two lane-changing executions to the right lane, the maximum 
attention of the target vehicle switches to (Right, 1) and (Right, 2) (i.e., the two spikes in the diagram). 
These results demonstrate that STA-LSTM can capture intricate driving behaviors in detail.
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to explain the influences of histori-
cal trajectories and the locations of 
neighboring vehicles on the target 
vehicle’s future motion. 

We conduct detailed analyses 
of the learned attention weights 
based on various vehicle and envi-
ronmental factors, including target 
vehicle class, target vehicle loca-
tions, and neighboring vehicle den-
sities. In addition, we find that the learned attention weights 
can be used to interpret lane-changing behaviors of the tar-
get vehicle. Together, our in-depth study of the attention 
distribution of the target vehicle on itself and neighboring 
vehicles can potentially benefit the development of many 
ITS applications, such as advanced driver assistance and 
AV motion planning and navigation.

Future Work
Many future research directions can stem from this work. 
First, we will continue to test the performance of STA-
LSTM over other prediction horizons and analyze the 
change of the attention weights. Second, instead of using 
grid-based discretization to model the relationship be-
tween the target vehicle and neighboring vehicles, other 
types of data structures can be explored. For example, a 
graph in which nodes representing vehicles and edges 
representing the influences among vehicles can be used 
to replace the grid. Therefore, it would be interesting to 
test whether a graph-based deep learning technique such 
as the graph convolutional neural network [30], [31] can be 
used to capture the correlations among vehicles and pre-
dict vehicle trajectories.

The data used to learn STA-LSTM are from stationary 
sensors installed on US-101 and I-80. While these sensors 
provide complete and accurate traffic measurements, 
they are mostly found on highways and major roads, 
which constitute only a small portion of a city. To use our 
approach for autonomous driving on arterial roads, we 
need to work with mobile data such as GPS reports. Given 
that GPS data can be either sparsely or densely sampled, it 
would be interesting to combine the previous techniques 
for addressing sparse [32] or dense GPS data [33], [34] with 
STA-LSTM. Finally, it would be interesting to extend our 
approach to other trajectory data sets through transfer 
learning [35].

STA-LSTM can also be used to enhance traffic simu-
lation models. Realistic virtual traffic, as a result of an 
improved simulation technique, has many applications 
in fields including: 1) ITS, such as analyzing congestion 
causes, identifying network bottlenecks, and testing trans-
port policies at the macroscopic scale [36]–[38]; and 2) vir-
tual environments, such as improving the believability of 
traffic animation and reconstruction [39], [40] and enhanc-

ing the training and testing of AVs at the microscopic scale 
[41]. It would be of great use to develop simulation models 
that incorporate STA-LSTM.
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