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Abstract: Accurately predicting network-level traffic conditions has been identified as a critical need
for smart and advanced transportation services. In recent decades, machine learning and artificial
intelligence have been widely applied for traffic state, including traffic volume prediction. This paper
proposes a novel deep learning model, Graph Convolutional Neural Network with Data-driven
Graph Filter (GCNN-DDGF), for network-wide multi-step traffic volume prediction. More specifically,
the proposed GCNN-DDGF model can automatically capture hidden spatiotemporal correlations
between traffic detectors, and its sequence-to-sequence recurrent neural network architecture is able
to further utilize temporal dependency from historical traffic flow data for multi-step prediction.
The proposed model was tested in a network-wide hourly traffic volume dataset between 1 January
2018 and 30 June 2019 from 150 sensors in the Los Angeles area. Detailed experimental results
illustrate that the proposed model outperforms the other five widely used deep learning and machine
learning models in terms of computational efficiency and prediction accuracy. For instance, the
GCNN-DDGF model improves MAE, MAPE, and RMSE by 25.33%, 20.45%, and 29.20% compared
to the state-of-the-art models, such as Diffusion Convolution Recurrent Neural Network (DCRNN),
which is widely accepted as a popular and effective deep learning model.

Keywords: deep learning; graph convolutional gated recurrent neural network; data-driven graph
filter; networkwide multi-step traffic prediction

1. Introduction

Short-term traffic state prediction (such as traffic speed and flow prediction in the
next 15 min) is a critical element in transportation control and operation in smart cities.
Extensive studies on short-term traffic state prediction by using traditional statistical and
machine learning models, such as the Autoregressive Integrated Moving Average model
(ARIMA) [1,2], linear multi-regression dynamic model [3], k-Nearest Neighbor (k-NN) [4],
Support Vector Machine [2,5], Artificial Neural Networks (ANN) [6,7] have been appearing
in the recent decade. In addition, recent advances in deep learning models [8,9] have also
been applied for short-term traffic state applications, and many studies have evidenced the
perfect performance of deep learning models [10–13].

Although the progress of traffic state prediction models has been observed, previous
studies could be improved from different aspects. From the spatial perspective, many
existing studies only predict the traffic state of individual road links, intersections, and
single or few traffic detectors [1–4,6,7,11]. For example, travel speed data were collected
from two locations in a major ring road around Beijing by Ma et al. 2015 [11]. Therefore,
the correlation between different sensors cannot be described by using those approaches.
On the other hand, the majority of previous studies only makes single-step prediction for
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different next-time intervals, such as 15-min or one hour [1–5,7,10,11,13,14]. For instance,
in a bike-sharing network study [10], the 22,304 hourly bike-sharing demand values are
used to train the models. In comparison, the following 2000 hourly bike-sharing demand
values are included in the validation dataset, and the remaining 2000 are taken as the
testing dataset.

Several scholars have pointed out the necessity of multi-step traffic state prediction for
the whole network [12,15]. For example, a single-step traffic state prediction for a fixed road
segment is inadequate for some ITS applications, like dynamic travel route optimization. Re-
current neural network (RNN) is one of the most popular deep learning architectures, which
is especially capable of modeling non-linear temporal dependencies in sequential data and
has been applied in many recent traffic state prediction studies [11,14,16] for multiple-step
predictions. The sequence-to-sequence recurrent neural network (Seq2Seq RNN) archi-
tecture was first proposed for natural language processing [17], and it is made up of two
RNNs: the encoder and the decoder. The encoder takes a sequence of historical traffic states
as the input, and the decoder generates an output sequence as predictions. Some previous
studies train different deep learning models for various prediction horizons to realize the
multi-step prediction [12,16,18,19]. However, training deep learning models for various
prediction tasks is time-consuming, which limits their usage in practice. On the other
hand, the wide adoption of traffic monitoring and sensing technologies, including loop
detectors [20,21], Global Positioning System (GPS) [22,23], and remote traffic microwave
sensors [11], as well as the emerging connected and automated vehicle (CAV) technolo-
gies [24,25], generating a large amount of traffic data, which enable the network-wide
multi-step traffic state prediction.

One of the keys to improving network-wide traffic state prediction is to understand
the spatiotemporal correlation between traffic sensors in the network [10,12,13,26–28]. A
novel deep-learning-based traffic flow prediction method was developed by considering
the spatial and temporal correlations inherently [12]. Additionally, an extended time-series-
based approach takes into account spatial and temporal interactions in a new manner,
specialized to the context of road traffic was proposed by Min and Wynter [28]. One
intuitive assumption is that the latest measures from spatially near traffic sensors are
adequate for forecasting their traffic states in the future [13]. However, in some scenarios,
this assumption may not hold. As shown in Figure 1a, two sensors monitor traffic flow
in two directions. In that case, traffic congestion observed by one sensor in one direction
does not imply that the other direction will be jammed. Some researchers propose to utilize
network topology distance to capture spatiotemporal correlation among sensors [27,29].
Figure 1b illustrates an example in which this assumption is also questionable. When an
on-ramp locates on the road segment between two sensors, their traffic states, e.g., traffic
flow, could be different due to the on-ramp, which offers inflow traffic. Besides the cases
mentioned above, when an arterial road is served as an alternative to a nearby highway,
their traffic states may be strongly correlated. However, they are not considered topological
neighbors [13].
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The breakthrough of deep learning techniques, especially Convolutional Neural Net-
works (CNNs), has brought new insights to solve this problem. CNNs extract meaningful 
statistical patterns presented in image and video data [30]. The correlations among picture 
grids can be learned automatically through various localized filters. Because CNNs can 
only work on data with regular or well-defined structures, such as images, for network 
traffic state prediction, one method is geospatial map partition [26]. For instance, the 
whole city is converted into a grid map where each grid denotes a small region with a 
predefined and constant size. The pixel value of each grid can be calculated based on the 
inflow and outflow traffic through the small grid region. Although this approach can au-
tomatically capture the correlations among all grids, one drawback of the geospatial map 
partition approach is that it is hard to determine the size of the grid. A large grid may fail 
to satisfy the required granularity or resolution for specific traffic sensors or road seg-
ments, while a small grid will lead to a huge image matrix and increase the computational 
burden. Another image transformation approach is a time-space diagram [18], where the 
number of columns in the image is the length of time intervals, and the number of rows is 
the number of road segments or traffic sensors. At the same time, each pixel represents 
the average traffic speed for a road segment at the time interval. The issue with this ap-
proach is that the order or sequence of the row elements (e.g., road segments) is arbitrarily 
predefined. Hence, the correlations between road segments may not be fully captured by 
the localized kernel filters of CNNs.  

Due to the limitation of CNNs in processing irregular network data (e.g., traffic state 
data from a road network), some scholars have extended CNNs to graph convolutional 
neural networks (GCNNs), which produce the convolution operations based on signal 
processing technologies and graph theory [30,31] and do not require the image transfor-
mation operations in network-wide traffic state prediction [27,29]. Instead, the input of 
the model is the traffic state data, which is directly embedded in a graph, where the nodes 
represent traffic sensors, and the adjacency matrix of the graph is constructed based on 
Euclidean distance [29] or road network distance [27]. GCNNs have outperformed tradi-
tional models as well as deep learning models in previous studies [27,29]. However, the 
assumption behind the CNN models still holds in GCNN models, which is the correla-
tions between two sensors are stronger if they are spatially or topologically near than oth-
ers. It makes little sense in some scenarios as described above, and it is expected the per-
formance of the GCNNs can be further improved through a well-designed adjacency ma-
trix [30,32].  

Therefore, it is critical to accurately capture the spatiotemporal correlation between 
traffic sensors to model an irregular traffic network for network-wide traffic state fore-
casting. Additionally, computationally efficient and effective multiple-step traffic state 
forecasting is highly desired.  

Figure 1. Freeway Segments with (a) two Spatially Near Traffic Sensors and (b) two Topologically
Near Traffic Sensors.

The breakthrough of deep learning techniques, especially Convolutional Neural Net-
works (CNNs), has brought new insights to solve this problem. CNNs extract meaningful
statistical patterns presented in image and video data [30]. The correlations among picture
grids can be learned automatically through various localized filters. Because CNNs can
only work on data with regular or well-defined structures, such as images, for network
traffic state prediction, one method is geospatial map partition [26]. For instance, the whole
city is converted into a grid map where each grid denotes a small region with a predefined
and constant size. The pixel value of each grid can be calculated based on the inflow and
outflow traffic through the small grid region. Although this approach can automatically
capture the correlations among all grids, one drawback of the geospatial map partition
approach is that it is hard to determine the size of the grid. A large grid may fail to satisfy
the required granularity or resolution for specific traffic sensors or road segments, while
a small grid will lead to a huge image matrix and increase the computational burden.
Another image transformation approach is a time-space diagram [18], where the number of
columns in the image is the length of time intervals, and the number of rows is the number
of road segments or traffic sensors. At the same time, each pixel represents the average
traffic speed for a road segment at the time interval. The issue with this approach is that
the order or sequence of the row elements (e.g., road segments) is arbitrarily predefined.
Hence, the correlations between road segments may not be fully captured by the localized
kernel filters of CNNs.

Due to the limitation of CNNs in processing irregular network data (e.g., traffic state
data from a road network), some scholars have extended CNNs to graph convolutional
neural networks (GCNNs), which produce the convolution operations based on signal pro-
cessing technologies and graph theory [30,31] and do not require the image transformation
operations in network-wide traffic state prediction [27,29]. Instead, the input of the model
is the traffic state data, which is directly embedded in a graph, where the nodes represent
traffic sensors, and the adjacency matrix of the graph is constructed based on Euclidean
distance [29] or road network distance [27]. GCNNs have outperformed traditional models
as well as deep learning models in previous studies [27,29]. However, the assumption
behind the CNN models still holds in GCNN models, which is the correlations between
two sensors are stronger if they are spatially or topologically near than others. It makes
little sense in some scenarios as described above, and it is expected the performance of the
GCNNs can be further improved through a well-designed adjacency matrix [30,32].

Therefore, it is critical to accurately capture the spatiotemporal correlation between
traffic sensors to model an irregular traffic network for network-wide traffic state fore-
casting. Additionally, computationally efficient and effective multiple-step traffic state
forecasting is highly desired.

In this study, a novel GCNN with a data-driven graph filter (GCNN-DDGF) is pro-
posed for network-wide traffic volume prediction. It has a few advantages compared with
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previous models. First, it keeps the merit of GCNN of applying to an irregular traffic
network; furthermore, the data-driven graph filter (DDGF) enables it to automatically
learn the adjacency matrix to capture the spatiotemporal correlation between traffic sensors
instead of the predefinition, which may not be accurate. Second, instead of making merely
single-step predictions, the GCNN-DDGF model is implemented on top of a sequence-
to-sequence recurrent neural network (Seq2Seq RNN) architecture for efficient multi-step
predictions by using the identical model to avoid a large amount of hyperparameter tuning.
Additionally, the proposed model chooses the Gated Recurrent Unit (GRU) as the RNN
cell, which has similar performance as the Long Short-term Memory Unit (LSTM) but is
more computationally efficient [33]. The model also utilizes the fast approximation of the
spectral graph convolution method from previous GCNN studies [32]. Both designs further
speed up the training and modeling of the GCNN-DDGF model.

The experiments are conducted based on an hourly traffic volume dataset collected
from 150 sensors from 1 January 2018 to 30 June 2019 in the Los Angeles area [21]. The
GCNN-DDGF utilizes past 12-h traffic volumes to predict the next 12-h traffic volumes for
all sensors. The results show that the proposed model outperforms two state-of-the-art
deep learning models [27] and three traditional traffic volume prediction models in terms
of criteria, including MAE, MAPE, and RMSE. The GCNN-DDGF has also demonstrated
better performance from both the temporal and spatial aspects. Moreover, the training
efficiency of the GCNN-DDGF is verified by experimental results.

The rest of the paper is organized as follows. The next section introduces relevant
traffic state prediction studies. After that, the methodology part presents the proposed
GCNN-DDGF model. The dataset and model results are then discussed in the Data and
Experiment section. Finally, the last section closes the whole paper with conclusions and
future research efforts.

2. Related Work

This section first introduces relevant studies considering spatial and temporal correla-
tions in short-term traffic state predictions. Following that, models for network-wide and
multi-step traffic state predictions will be presented separately.

2.1. Spatial and Temporal Correlations

It has been widely demonstrated that spatial and temporal correlations exist in traffic
state data [12,13,28,34–36]. Traffic state data from a fixed sensor can be considered as a
cyclical time series, which is usually correlated with the series collected from a nearby
traffic sensor. The spatial and temporal correlations can be easily verified through the cross-
correlation function [35] and the Hurst Exponent [2,34]. However, it is difficult to identify
the fittest spatial and temporal features in the modeling process, e.g., determining relevant
traffic state series from all sensors and the appropriate time lag for each series. Other studies
take statistical criteria such as Akaike Information Criterion (AIC) and autocorrelation
functions to identify relevant time lags in historical traffic state data [35,36]., while some
studies rely on empirical experiments, e.g., grid search [12] or genetic algorithm (GA) [34],
to determine the optimal number of previous time intervals to obtain time features. In terms
of spatially correlated sensor identification, a few studies directly choose the same link
sensors [34,35] or those at the adjacent upstream and downstream segments [36]. To predict
traffic flow at a target sensor, Polson and Sokolov (2017) applied the LASSO regression
analysis to select important predictors from six lagged measurements from 20 traffic sensors
at the same link [13]. For network-wide traffic state prediction, it is unrealistic to identify
the related traffic sensors for each of the hundreds of sensors in the road network using
this approach.

2.2. Network-Wide Traffic State Prediction

Min and Wynter (2011) proposed one of the earliest network-wide traffic state pre-
diction studies [28]. They applied a multivariate spatiotemporal autoregressive model
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(MSTAR) to predict the network-wide speed and volume, considering neighboring links’
effect on each link’s traffic prediction. The adjacent links of a given link are predefined
based on whether they are reachable with historical average link speed during a specified
period. Moreover, Cai et al. (2016) implemented an enhanced k-NN model to predict the
traffic state for 30 road segments [15]. The nearest neighbors are selected based on a com-
posite equivalent distance that considers the physical distance, the correlation coefficient,
and the connective grade between road segments.

Compared with the traditional modeling approaches that require well-designed tem-
poral and spatial features [13,15,28,34–36], deep learning models are becoming more and
more prevalent in network-wide traffic prediction. One of the main reasons is the rep-
resentation learning capability that needs little effort to extract features from raw data
manually [37]. Lv et al. (2015) built a Stacked Autoencoder (SAE) network that takes
historical network-wide traffic flow data as a flat input vector [12]. They argue that SAE can
capture inherent spatial and temporal correlations in data by itself. Some other robust deep
learning architectures, such as CNNs, have emerged as a preferred choice because localized
kernels are designed to capture relationships among regular grids in image data automati-
cally. However, traffic state data have to be transferred into an image for CNNs [18,26,38].
GCNNs extended CNNs by considering spatial correlations between traffic sensors through
the predefinition of the graph adjacency matrix, which is essentially a function of the spatial
Euclidean distance or the topological road network distance [27,29].

2.3. Multi-Step Traffic State Prediction

Three approaches have been discovered in multi-step traffic state previous studies.
The most straightforward approach is to make predictions directly for multiple steps [15,38].
Cai et al. (2016) built an enhanced k-NN model based on spatiotemporal state matrices, the
output of which is also a matrix that represents the future 12-step prediction for the whole
30 road segments [15]. Wang et al. (2020) attempted to change the dimension of the output
layer for CNNs to match the number of prediction steps [38]. In the second approach first
builds single-step prediction models and provides prediction values, which are used as
the observed true values for the following prediction steps. The whole process is repeated
until the required prediction steps are reached [28,35,39]. The last approach builds isolated
prediction models for various horizons. As representative examples, Lv et al. (2015) and
Ma et al. (2017) trained multiple deep-learning models with various prediction hori-
zons [12,18]. The hyperparameter tuning of these models is very time-consuming due to
the complexity of the models.

As a prevalent deep learning architecture for sequential data generation and prediction,
Seq2Seq RNN has been mainly applied for natural languages processing tasks such as
machine translation [17] and informative conversation generation [40]. Seq2Seq RNN only
needs to be trained once for multi-step prediction. Similar to the second approach, the
decoder in Seq2Seq RNN takes old forecasts as the input to predict the following steps until
the required number is satisfied [27].

3. Methodology

This section introduces the Graph Convolutional Neural Network with Data-driven
Graph Filter (GCNN-DDGF) model from three components: encoder-decoder recurrent
neural network architecture, spectral graph convolution, and data-driven graph filter.

3.1. Encoder-Decoder Recurrent Neural Network Architecture

Assuming a transportation road network has N sensors, the traffic volume of all
sensors in hour k are xk ∈ RN . The main task is to use the previous T-step traffic
volumes Xk ∈ RN×T , Xk = [xk−T+1, . . . , xk] to predict the next F-step traffic volumes
Yk ∈ RN×F, Yk = [ŷk+1, . . . , ŷk+F], which are the outputs of the model. To capture the
temporal dependency, the GCNN-DDGF model implements the encoder-decoder recurrent
neural network (RNN) architecture, in Figure 2.
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The RNN cells include the Long Short-term Memory cell (LSTM) and Gated Recurrent
Unit (GRU) cell, which both rely on the gate mechanism to modulate the flow of infor-
mation inside the cell. In this study, GRU cells are used because of their simple structure,
which only contains an update gate and a reset gate and can lead to more computational
efficiency. As shown in the diagram, for each GRU cell in the encoder part, the input is xt,
t = k− T + 1, . . . , k, and the update gate zt and the reset gate rt can be calculated as follows:

zt = σ([ht−1, xt]·Wz) (1)

rt = σ([ht−1, xt]·Wr) (2)

The corresponding output is the hidden state ht, which can be calculated as follows:

h̃t = tahn([rt·ht−1, xt]·W) (3)

ht = (1− zt)× ht−1 + zt × h̃t (4)

Note σ and tahn represent the Sigmoid and Tangent activation functions. Wz, Wr,
and W denote trainable weight parameters. The reset gate rt determines the amount of
information to keep from the previously hidden state ht−1. The update gate zt determines
the information discarded from the previous step and how much information is to be added
from the current time step.

In the decoder part, Yk = [ŷk+1, ŷk+2, . . . , ŷk+F] represents the prediction results. hk
from the encoder is fed into the first GRU cell to initialize the hidden state. In the decoder,
the input to the first GRU cell is a unique ‘GO’ symbol, which is a zero vector 0. Each
of the rest of the GRU cells in the decoder takes the prediction of the preceding step as
the input. The calculation of hd, d = k + 1, k + 2, . . . , k + F is similar, as described in
Equations (1)–(4). It is fed into a feedforward layer to generate the prediction ŷd:

ŷd = hd·W f (5)
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The proposed GCNN-DDGF model can further enhance the GRU gate operations with
a data-driven graph filter and a spectral graph convolution. More details can be found in
the following sub-sections.

3.2. Spectral Graph Convolution

The whole traffic network can be represented as a graph G = (V, x, ε, A), where
V is a finite set of vertices (i.e., traffic sensors) with size N; signal x ∈ RN is a scalar for
every vertex, e.g., the traffic volume for a specific hour; ε is a set of edges, A ∈ RN×N is the
adjacency matrix, and entry Aij represents the connection degree between the signals at
two vertices. A normalized graph Laplacian matrix is defined as

L = IN − D−1/2 AD−1/2 (6)

where IN is the identity matrix, and D ∈ RN×N is a diagonal degree matrix with
Dii = ∑j Aij. L is a real symmetric positive semidefinite matrix that can be diagonalized as

L = UΛUT (7)

where U = [u0, u1, . . . , uN−1]; Λ = diag([0, 1, . . . , N−1]); 0, 1, . . . , N−1 are the eigenval-
ues of L, and u0, u1, . . . , uN−1 are the corresponding set of orthonormal eigenvectors.

A spectral convolution on the graph is defined as follows:

gθ × x = Ugθ(Λ)UTx (8)

where gθ(Λ) is denoted as a function of the eigenvalues of L.
In Equation (8), the spectral graph convolution process includes graph Fourier trans-

form, filtering, and inverse graph Fourier transform.
The time complexity defined in Equation (8) is O

(
N2), due to the multiplication with

the eigenvector matrix U. Moreover, the eigendecomposition of L is also computationally
expensive. Hence, on the graph, a simplified spectral convolution is defined as follows [32]:

gθ × x = D̃−
1
2 ÃD̃−

1
2 xθ (9)

where θ ∈ R is the filter parameter; Ã = A + IN indicates the summation of the adjacency
matrix of the undirected graph A and the identity matrix IN . Ã is the adjacency matrix of an
undirected graph where each vertex connects with itself; D̃ii = ∑

j
Ãij. The computational

complexity is reduced to O(|ε|).

3.3. Data-Driven Graph Filter

The spectral graph convolution usually needs a predefinition of adjacency matrix A;
however, it is not trivial to determine. The graph structure is of critical importance to the
GCNN performances [30,32]. In a previous study [10], Equation (9) could be redefined as
the following:

gÂ × x = D̃−
1
2 ÂD̃−

1
2 x (10)

where Â is called the Data-driven Graph Filter (DDGF), which is a symmetric matrix
consisting of trainable filter parameters, Â ∈ RN×N .

Now we integrate the spectral graph convolution defined in Equation (10) into the
gate operations in the GRU cell. Equations (1)–(3) would be straightforwardly revised
as follows:

zt = σ
(

gÂz
× [ht−1, xt]·Wz

)
(11)

rt = σ
(

gÂr
× [ht−1, xt]·Wr

)
(12)

h̃t = tahn
(

gÂ × [rt·ht−1, xt]·W
)

(13)
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Wz, Wr, W, Âz, Âr, and Â can be trained through the back-propagation procedure.

4. Data Preparation

An hourly traffic volume dataset from the PeMS system, which was collected from
150 sensors in the Los Angeles area from 1 January 2018 to 30 June 2019 [21], was used. The
dataset is big enough, and each sensor recorded 13,104 hourly traffic volumes (vehicle per
hour). The mean values of the traffic volume series from each sensor are ascendingly sorted
and illustrated in Figure 3a, where the upper and lower bounds are also plotted based
on the standard deviations. Figure 3b,c show 24 h of traffic volume data for a weekday
(1 February 2018) from randomly selected two sensors. Sensor 716271 (Figure 3b) has two
peak hours, and the largest one is around 1000 vehicles at 17:00, while the peak-hour traffic
volume of Sensor 716500 (Figure 3c) in the morning has more than 10,000 vehicles. Some
hourly traffic volumes for the afternoon are higher than 8000 vehicles.
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Figure 4 further illustrates the locations of all 150 traffic sensors, which are distributed
along with the highway system on the map. The sensors with the mean hourly traffic
volumes in the top and bottom 25 percentiles are noted as red and black points. The blue
points are the remaining sensors. According to the spatial distribution of the sensors, the
west side of the network (more red sensors observed) may have a relatively higher traffic
volume than the east side.
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5. Experimental Results

The whole dataset is split into training, validation, and testing datasets according to
rates of 0.7, 0.1, and 0.2. The task of this study is to predict 12-step (hours) traffic volume
in the future for all sensors by their historical 12-step traffic volume data. To verify the
prediction performance of the developed model, a few benchmark models, including deep
learning and statistical models, have been built into this study. A brief introduction of these
benchmark models is listed below:

(1) Diffusion Convolution Recurrent Neural Network (DCRNN): It outperforms mul-
tiple state-of-the-art machine learning models for network-wide multi-step traffic speed
prediction [27]. DCRNN requires a predefined adjacency matrix according to the road
network’s topological features. In this study, the (i, j)th element was calculated as follows:

Aij = exp

(
−

dist
(
vi, vj

)
σ2

)
(14)

where dist
(
vi, vj

)
is computed using the spatial distance between the sensor vi and

vj; σ is the standard deviation of distances. Further, Aij is set as 0 if Aij ≤ 0.1 to keep
the sparsity of the adjacency matrix.

(2) Sequence to Sequence Recurrent Neural Network (Seq2Seq-RNN) model: Seq2Seq-
RNN model has been mainly used in naturalistic language processing (NLP) stud-
ies [41]. The Seq2Seq-RNN model implemented in this study is designed for a high-
dimension time series prediction [42].

(3) Vector Autoregression (VAR) model: Autoregression models (AR) have been widely
used in traffic volume prediction studies [2,43]. VAR models taking high-dimension
time series data as the input can predict future traffic volume for multiple sensors.
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(4) Linear Regression (LR) model: A conventional linear regression model has been
built for each station that takes traffic volume data from the previous 12 h to predict
the next 12-h traffic volume.

(5) Historical Average model (HA): HA is the simplest model that uses the mean of
the traffic volume at the same hour across different days for the same sensor in the
training dataset as the prediction.

5.1. Evaluation Metric

Three evaluation criteria are used for the comparison of these models, including Mean
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square
Error (RMSE). The calculation equations are shown below:

MAE =
1

F ∗ N

F

∑
i

N

∑
j

∣∣yij − ŷij
∣∣ (15)

MAPE =
1

F ∗ N

F

∑
i

N

∑
j

∣∣yij − ŷij
∣∣

yij
(16)

RMSE =

√√√√ 1
F ∗ N

F

∑
i

N

∑
j

(
yij − ŷij

)2 (17)

where F = 12 denotes the prediction horizon, while N = 150 indicates the sensor number. ŷij
and yij are the predicted and ground truth traffic volume in hour i for sensor j, respectively.

5.2. Deep Learning Model Training

Training deep learning models, such as GCNN-DDGF, DCRNN, and Seq2Seq-RNN
is not trivial. This study calibrates hyperparameters of deep learning models using the
grid search method. An early-stopping mechanism is used to avoid overfitting. If the
MAE of the validation dataset is reduced for 50 continuous epochs, the model training will
continue. The testing dataset is used to evaluate the models with the lowest MAE tested in
the validation dataset.

Figure 5 illustrates the training time for the three mentioned deep learning models.
Seq2Seq-RNN only needs 32 min for training, which is much faster than GCNN-DDGF and
DCRNN. This is because Seq2Seq-RNN does not have the graph convolution operation.
The training of GCNN-DDGF is much quicker than the DCRNN due to the simplified
spectral graph convolution mechanism.
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5.3. Prediction Performance Comparison

As shown in Table 1, deep learning models (GCNN-DDGF, DCRNN, Seq2Seq-RNN)
significantly perform better than the traditional models (VAR, LR, HA) in all performance
metrics. Especially, GCNN-DDGF has the best overall performances for all three evaluation
parameters due to its trainable adjacency matrices. It is followed by the other two deep
learning models, DCRNN and Seq2Seq-RNN. Compared to the Seq2Seq-RNN model, the
graph convolution operations of GCNN-DDGF and DCRNN contribute to higher accuracy.
For the traditional models, the VAR model performs better than LR and HA.

Table 1. Overall Performances on Testing Dataset.

MAE MAPE RMSE

GCNN-DDGF 343.37 14.19% 540.69
DCRNN 459.85 17.84% 763.76

Seq2Seq-RNN 521.01 21.12% 821.51
VAR 640.64 27.03% 895.31
LR 788.13 33.37% 1087.38
HA 752.98 35.36% 1086.81

5.4. Performance Comparison from Temporal Aspect

Considering the main task of the study is to predict the future multiple-step traffic
volume, it is interesting to compare the MAE, MAPE, and RMSE of each prediction step for
all six models. As shown in Figure 6, as the prediction step goes up, prediction errors of all
models except the HA model generally increase, although a slight prediction error drop is
observed for some models. The constant prediction error of the HA model can be explained
by the fact that the HA model does not rely on the 12 historic steps to make predictions but
simply uses the average traffic volume for the same hour and sensor. As expected, the deep
learning models outperform all the prediction steps in terms of prediction accuracy. The
proposed GCNN-DDGF keeps the best performance, except that the DCRNN model has
the lowest MAPE for the first prediction step.

Forecasting at a far distance is usually hard and unreliable. The error curves of
DCRNN and Seq2Seq-RNN slightly go down at later prediction steps. The proposed
model shows a similar pattern but with better stability. Interestingly, the error of multi-step
prediction does not necessarily increase monotonically. Previous research has also found
this phenomenon without further discussion [44,45]. This may be because the prediction
accuracy at a particular step depends on many factors, including the number of steps, the
quality of previous predictions, and the time of the day. Predicting traffic during peak hours
is more complicated than off-peak hours [46]. As we conduct 12-step prediction at one hour
per step, the prediction time may range both “easy-to-predict” and “difficult-to-predict”
hours, thus affecting the error curve shape.
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6. Performance Comparison from Spatial Aspect

Figure 7 shows the histograms of MAE, MAPE, and RMSE for each sensor for GCNN-
DDGF and DCRNN models. In general, the proposed GCNN-DDGF model has better
prediction accuracy. For example, Figure 7a shows that from GCNN-DDGF, most sensors
have MAEs between 200 and 400, while Figure 7d shows that from DCRNN, the range
between 400 and 600 has a higher frequency. Similarly, GCNN-DDGF generates more
sensors with lower MAPEs and RMSEs than DCRNN from Figure 7.
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Figure 8 takes a closer look at the prediction made by GCNN-DDGF. We randomly
pick three sensors: 716271, 716067, and 716032. For each sensor, two 12-step predictions,
one at 00:00 and the other one at 12:00, are displayed. The corresponding ground truth
values are also plotted. Sensor 716271 has a much lower traffic volume compared with the
other two. The MAE for one 12-step prediction ranges from 67.48 to 502.88. In general, the
predicted increasing or decreasing trends are consistent with the real data trends, and the
predictions are close to the actual values for the nighttime. In contrast, a few hours in the
daytime have more significant deviations, such as 8:00, 15:00, 18:00, and so on.Sustainability 2022, 14, x FOR PEER REVIEW 14 of 16 
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12:00 p.m. for the same three sensors.
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7. Conclusions and Future Research

This study proposes a graph convolutional neural network with a data-driven graph
filter (GCNN-DDGF) model for network-wide traffic volume prediction, which does not re-
quire the predefinition of the adjacency matrix for graph convolution; instead, it integrates
the DDGF with gated recurrent network (i.e., GRU) cell which can automatically capture
the hidden spatiotemporal correlation between state sensors. The sequence-to-sequence
architecture also allows it to utilize the temporal dependency for multi-step-ahead predic-
tions. The GCNN-DDGF model was tested on a real-world dataset along with two deep
learning models and three classical benchmark models. The proposed model consistently
outperforms the others in terms of MAE, MAPE, and RMSE. For instance, the GCNN-DDGF
model improves MAE, MAPE, and RMSE by 25.33%, 20.45%, and 29.20%, compared to
other deep learning models, such as Diffusion Convolution Recurrent Neural Network
(DCRNN). Furthermore, the GCNN-DDGF has also demonstrated better performance for
both temporal and spatial aspects.

For future research directions, it is interesting to analyze the learned adjacency matrices
further to understand the correlations between traffic sensors. More tests for applying the
proposed model to different traffic state parameters, such as traffic speed, are necessary if
other traffic state datasets are available. The unobserved heterogeneity may be considered
for developing a more sophisticated model in the future.
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