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Abstract— This paper proposes a new control algorithm
for human-robot co-transportation using a robot manipulator
equipped with a mobile base and a robotic arm. We integrate
the regular Model Predictive Control (MPC) with a novel
pose optimization mechanism to more efficiently mitigate dis-
turbances (such as human behavioral uncertainties or robot
actuation noise) during the task. The core of our methodology
involves a two-step iterative design: At each planning horizon,
we determine the optimal pose of the robotic arm (joint angle
configuration) from a candidate set, aiming to achieve the
lowest estimated control cost. This selection is based on solv-
ing a disturbance-aware Discrete Algebraic Riccati Equation
(DARE), which also determines the optimal inputs for the
robot’s whole body control (including both the mobile base and
the robotic arm). To validate the effectiveness of the proposed
approach, we provide theoretical derivation for the disturbance-
aware DARE and perform simulated experiments and hardware
demos using a Fetch robot under varying conditions, including
different trajectories and different levels of disturbances. The
results reveal that our proposed approach outperforms baseline
algorithms.

I. INTRODUCTION

Collaborative human-robot systems can significantly re-
duce human workloads (Fig. 1). The capability of au-
tonomous robots to adapt to disturbances (such as human
behavioral uncertainties or robot actuation noise) is the key
to determining system operational efficiency and safety [2].
One frequently encountered task in engineering settings is
object transportation. To employ a human and a mobile
manipulator to perform co-transportation, the key challenges
arise from the disturbances [3], which may not adhere strictly
to predefined trajectories, and from the increased control
complexity due to the coupling of the robotic arm and its
mobile base [4].

To address these challenges, this paper formulates and
solves a disturbance-aware Model Predictive Control (MPC)
tracking problem enhanced with a pose optimization mech-
anism. The goal is to derive optimal control strategies by
leveraging whole-body control, enabling the robot to estimate
the impact of disturbances on costs in terms of tracking errors
and energy consumption when simultaneously controlling the
mobile base and robotic arm. Building on this, the pose opti-
mization mechanism allows the robot to dynamically adjust
its joint angle configurations, more efficiently compensating
for trajectory deviations caused by disturbances and reducing
control costs.
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Fig. 1: Human robot co-transportation through disturbance-
aware MPC and pose optimization (redundancy resolution
for the same end effector position).

Statement of contribution: Our contributions in this paper
are threefold. Firstly, we formulate a new problem that con-
siders disturbances in an MPC tracking problem that incorpo-
rates pose optimization and the robot’s whole-body control.
Secondly, we propose a dual-phase optimization strategy,
which calculates the estimated control costs in the presence
of disturbance within a certain planning horizon, followed
by optimization of the robot’s pose through selection from
a set of joint angle combinations. Lastly, we demonstrate
the effectiveness of our method through a combination of
theoretical derivation, simulated experiments, and hardware
demos using a Fetch robot. We use quantitative comparisons
to highlight the advantages of our approach over existing
algorithms that either do not consider disturbances or lack a
pose optimization mechanism.

II. LITERATURE REVIEW

Trajectory Tracking: There has been considerable existing
literature investigating trajectory tracking using a mobile
robot or the end effector of a robotic arm. For mobile robots,
diverse algorithms such as MPC, learning-based nonlinear
MPC [5], and adaptive planning can be employed. On the
other hand, tracking using a robotic arm features algorithms
such as Gaussian process-based MPC [6], adaptive time
delay control [7], and model predictive path-following con-
trol [8]. These works focus on the high degree of freedom
(DOF) and address control problems under complex task
configurations and workspace constraints. When combining
a robotic arm with a mobile base, many existing studies
have addressed their comprehensive whole-body kinematics
control [9]. These holistic control mechanisms can signif-
icantly expand the operational workspace of the mobile
manipulator. Nonetheless, in many cases, the authors often
overlook disturbances, particularly those introduced by hu-
man uncertainties in collaborative tasks.

Pose Optimization: As part of end-effector control with a
high degree of freedom, our pose optimization arises from



the concept of redundancy resolution [10], where multiple
alternative joint angle combinations can achieve the same
end-effector pose. Redundancy resolution has been studied
for robotic arm manipulation using optimization-based meth-
ods [11], Monte Carlo tree search, the stiffness model of the
end-effector, and sampling-based methods [12]. Its main ben-
efits include avoiding singularities, improving reachability
in constrained spaces, and enhancing control accuracy [13].
These redundant robot poses are often used to overcome
static or dynamic environmental constraints. The efforts to
integrate pose optimization into co-manipulation problems
are limited [14], and, similar to the tracking problem, they
are not usually designed to better compensate for human
uncertainties. In contrast, our formulation integrates pose
selection with a disturbance-aware MPC formulation, leading
to the best pose that minimizes future expected costs.

Human-Robot Collaboration: Adapting robot responses
to align with human uncertainties during collaborative tasks
is necessary, but it presents challenges in terms of control
efficiency and safety. For this purpose, the integration of
reinforcement learning and model-based control has been
substantially used, such as using a robotic arm to assist
humans in specific target activities through model-based rein-
forcement learning [15], engaging in collaborative assembly
tasks using Gaussian Process MPC [16], robust variable
admittance control with unknown payload, sampling-based
MPC, such as MPPI, for task and motion planning [17],
handling task and joint space constraints etc. Some studies
have considered the whole-body kinematics of the mobile
manipulator during co-manipulation or transportation tasks
with a reactive controller, an adaptive collaborative interface
[18], and an environmental awareness module; as well as
human-humanoid collaboration to reduce the human work-
load in carrying objects [19], etc. While reinforcement learn-
ing demonstrates effectiveness in handling unmodeled human
uncertainties, it often lacks transparency to theoretically
ensure performance guarantees. To address this, robust MPC
provides a control-theoretic approach to handling uncertain-
ties in MPC problems, including consideration of strict safety
and physical constraints, as well as systems with varying
parameters [20]. However, they usually do not integrate the
MPC formulation with pose optimization to further improve
control performance, which is a key difference from the
problem considered in this paper.

III. PRELIMINARIES AND PROBLEM FORMULATION

We first introduce a trajectory with human uncertainties
that the robot must follow and adapt to. Then, we detail the
whole-body control of the mobile manipulator, composed
of both the mobile base and the robotic arm. Lastly, we
mathematically define an MPC tracking problem that is
aware of disturbances and incorporates pose optimization.

Notations: Let Ir denote the r × r identity matrix;
diag{a1, · · · , ar} denote a diagonal matrix. For a vector x,
|x|2 denotes its 2-norm. For a square matrix M , Tr(M)
denotes its trace. We use M ≻ 0 (M ⪰ 0) to denote that the
matrix is positive (semi-) definite. We let ∥x∥2M⪰0 = x⊤Mx.

A. Trajectory Prediction with Human Uncertainty

As illustrated in Fig. 1, the task is to enable a team com-
prising a mobile manipulator and a human to collaboratively
transport an object. We use r = [rx, ry, rz, rα, rβ , rγ ]⊤ ∈
R6 to represent the manipulator’s end effector pose to be
tracked in order to adapt to human movements, where
the entries correspond to three-dimensional positions and
orientations (roll, pitch, yaw), respectively. A trajectory is
then defined as r(k), k ∈ {0, 1, 2, · · · , H} with H being
the control time horizon for future time steps. In general,
the trajectory r(k) can be obtained by predicting future
human behaviors based on their historic poses. Additionally,
our formulation considers a disturbance term ϖ(τ) in the
trajectory caused by human uncertainty, which yields

r(k) = r̃(k) +D

k∑
τ=0

ϖ(τ). (1)

Here, r̃(k) is the predicted human behavior, which can be
obtained by various different methods in the literature, such
as direct curve fitting [21], recurrent neural network [22], etc.
If the co-transportation task has a desired nominal trajectory,
r̃(k) may also represent such a trajectory that is known to
the robot. The term ϖ(τ) ∼ N (0,Σ) represents the human
positional uncertainty that functions as disturbances to r(k).
The distribution of ϖ is assumed to be zero mean and follows
a covariance matrix Σ ∈ R3×3 in x, y, z directions, where
Σ encapsulates individual variations of humans. Different
values of Σ can represent different human preferences, as
they tend to introduce disturbances in varying directions
and magnitudes. Given the positional disturbances caused
by humans, we assume that the desired roll, pitch, and yaw

remain unchanged. Thus, D =
[
I3 03×3

]⊤
∈ R6×3. In ad-

dition, as will be discussed at the end of the next subsection,
ϖ(τ) can also be equivalently used to represent the robot’s
actuation disturbances if an appropriate covariance matrix Σ
can be quantified for the robot. Since this paper primarily
focuses on how robots can adapt to human uncertainties
rather than on human modeling itself, in the following, we
assume r̃(k) and Σ are known. Note that the use of different
methods to obtain r̃(k) and Σ does not impact the correctness
of our results.

B. Whole-body Control of a Mobile Manipulator

We use a Fetch mobile manipulator to present modeling
details. However, a similar mechanism is generalizable to
a wide class of mobile manipulator platforms.1 The Fetch
mobile manipulator has a differential drive base and a 7-
DOF robotic arm. We consider the heading angle of the base
ϕ as an additional degree of freedom, which yields an 8-
DOF configuration. With this, the end-effector pose s ∈ R6

expressed in the robot body frame can be transformed from
the inertial frame without rotation. Detailed modeling of the

1Here, for simplicity, we only present the kinematics considering joint
velocities. A dynamics model with torque control is given in the supple-
mentary material [1]. The following results are directly applicable to the
dynamics model.



mobile base, robotic arm, and whole-body kinematics of the
robot’s end-effector is in supplementary material [1]. The
state update equation of the end-effector is given by

s(k + 1) = s(k) +B(θ(k))u(k) (2)

with

B(θ(k)) = ∆t


cos(ϕ(k))

sin(ϕ(k)) J(θ(k))

04×1


where u = [v, ω⊤]⊤ ∈ R9 is the control input combining the
linear velocity of the base v and all rotations of the robot ω.
B(θ(k)) ∈ R6×9 is the input matrix depending on the joint
angle combinations θ(k). θ = [ϕ, θ2, θ3, · · · , θ8]⊤ ∈ R8

includes the mobile base heading angle ϕ and the seven
robotic arm angles; and ω = θ̇ = [η, θ̇2, θ̇3, · · · , θ̇8]⊤ ∈ R8

is the corresponding angular velocities. The Jacobian matrix
is computed by J(θ(k)) = ∂f(θ)

∂θ

∣∣∣
θ=θ(k)

∈ R6×8 where

f(·) is the forward kinematics equation which maps the end-
effector pose from the joint angle combinations. ∆t is the
time interval.

C. Disturbance Aware MPC with Pose Optimization

Our research problem focuses on effectively adapting to
disturbances, subject to the whole body kinematics of the
robot, as per Equation (2). We solve this by introducing
a special MPC formulation, which features a pose opti-
mization mechanism. Specifically, in addition to the regular
control inputs u(k), we allow the robot to change its joint
angle combination from θ0 to a new combination θ̄ before
the execution of control inputs, if the new θ̄ leads to a
lower predicted cost over the planning horizon. The rationale
behind this stems from redundant solutions that, given the
same end-effector pose realization, an 8-DOF robot can
have infinitely many feasible joint angle combinations. If
the robot is informed by the future trajectory and the human
uncertainty distribution, it can choose a better θ̄, i.e., a
pose with the advantage of inducing less future cost. The
disturbance-aware MPC tracking with pose optimization can
be formulated as follows:

min
u(0:H−1),θ̄∈Θ

J (u(0 : H − 1), θ̄)

≜ Eϖ

[
H∑

k=0

[
s(k)− r(k)

]⊤
Q
[
s(k)− r(k)

]]

+

H−1∑
k=0

u(k)⊤Ru(k) + κ|θ̄ − θ0|22 (3)

s.t. s(k + 1) = s(k) +B(θ̄)u(k), s(0) = s0

r(k) = r̃(k) +D

k∑
τ=0

ϖ(τ), ϖ ∼ N (0,Σ)

where u(0 : H−1) = {u(0), · · · , u(H−1)}, Q ∈ R6×6 ⪰ 0,
R ∈ R9×9 ≻ 0 are the weighting matrices for tracking
and input costs, respectively; κ ∈ R+ is the cost weight
for pose optimization. s0 is the current end-effector pose

to initialize each planning phase, and θ0 is the current
joint angle combination. For tractability, similar to prior
works [23], [24], we consider the linearized system with
a fixed B(·) matrix for the robot’s end-effector kinematics
for each planning horizon. The impact is small when the
planning horizon is short [24].

IV. MAIN RESULT

To solve problem (3), we observe that the optimal control
input sequence, u(0 : H − 1), is influenced by the input
matrix B(θ̄). Thus, it also depends on the robot pose θ̄,
which leads to our pose optimization. Since there are no
closed-form solutions for u(0 : H − 1) for general tracking
problems in MPC, optimizing both u(0 : H − 1) and θ̄
at the same time presents a challenge. Our approach to
address this is a dual-phase method. First, we generate a
set of candidate joint angle combinations or θ̄ values. For
each θ̄, we theoretically compute optimal control inputs,
u(0 : H − 1), and estimate the cost-to-go associated with it,
considering human uncertainties ϖ. Then, in the second step,
we examine candidate joint angle combinations and select the
one that yields the lowest estimated cost. This combines the
best of both tracking cost optimization and pose optimization
to find the most efficient θ̄ and u(0 : H − 1). We start
by presenting the result to solve the optimal control input
sequence u(0 : H−1) and the optimal cost J ∗ with a fixed
θ̄. For presentation simplicity, let B̄ = B(θ̄), and define the
following error dynamics for (2) by subtracting r(k+1) from
both sides of the equation:

e(k + 1) = e(k) + B̄u(k) + r(k)− r(k + 1) (4)
= e(k) + B̄u(k) + r̃(k)− r̃(k + 1)−Dϖ(k + 1)

with e(k) = s(k) − r(k) being the tracking error. We
hypothesize that the optimal cost-to-go function follows:

J ∗(e(k), k) = ∥e(k)∥2P (k) + 2e(k)⊤p(k) + c(k) (5)

where, P (k) ∈ R6×6, p(k) ∈ R6, c(k) ∈ R, are unknown
quantities to be determined. The following result shows that
the assumed solution form is valid, and the parameters can
be computed from a Discrete Algebraic Riccati Equation
(DARE).

Theorem 1. Given a B̄, assuming the optimal solution u∗

of (3) yields an optimal cost J ∗ with the form of (5). Then
P (k), p(k), and c(k) can be computed by the following
disturbance-aware DARE:

P (k) = Q+ P (k + 1)− P (k + 1)B̄MP (k + 1) (6a)

p(k) = p(k + 1) + P (k + 1)(r̃(k)− r̃(k + 1))

− P (k + 1)B̄MP (k + 1)(r̃(k)− r̃(k + 1))

− P (k + 1)B̄Mp(k + 1) (6b)

c(k) = c(k + 1) + ∥r̃(k)− r̃(k + 1)∥2P (k+1)

+ Tr(ΣD⊤P (k + 1)D)− ∥P (k + 1)(r̃(k)

− r̃(k + 1)) + p(k + 1)∥2BM + 2(r̃(k)

− r̃(k + 1))⊤p(k + 1) (6c)



with M = (R+ B̄⊤P (k+1)B̄)−1B̄⊤, terminal conditions:

P (k = H) = Q, p(k = H) = 0, c(k = H) = κ|θ̄ − θ0|22

The corresponding control input

u∗(k)=−M(P (k+1)(e(k)+r̃(k)−r̃(k+1))+p(k+1)) (7)

gives the cost in (5) with parameters in (6). □

Algorithm 1: Human-disturbance-aware MPC Track-
ing with Pose Optimization

1 Input Nominal trajectory r̃(k); human uncertainty
covariance matrix Σ; current joint angles θ0.

2 Formulate r(k = 0 : H) based on equation (1).
3 Create the joint angles candidate set Θ by sampling

around θ0, also add θ0 to Θ.
4 for each θ̄ ∈ Θ do
5 Compute Jacobian matrix, J(θ̄) = ∂f(θ)

∂θ

∣∣∣
θ=θ̄

.

6 Compute matrix B̄ = B(θ̄) with (2).
7 Solve the MPC by computing solutions for the

disturbance-aware DARE in Theorem 1.
8 Compute the optimal cost J ∗ associated with the

current θ̄ using (5).
9 end

10 Compare the costs J ∗ for all candidates θ̄ and find
the optimal θ̄∗ as pose optimization. Compute the
control for pose optimization as ū = θ̄∗−θ0

τ .
11 Reuse step 7 for the selected θ̄∗ and equation (7) to

generate control input sequence u∗(0 : H − 1).
12 Add ū and u∗(0) then apply them to the robot.

A complete proof of Theorem 1 can be found in [1].
From Theorem 1 and equation (7), it can be observed that
the optimal control input u∗(k) does not depend on c(k).
However, c(k) contributes to the computation of optimal
cost J ∗, which impacts the pose selection among the can-
didates. Specifically, our two-step solver is summarized in
Algorithm 1. For each MPC horizon, we first create the joint
angles candidate set Θ by randomly changing multiple joint
angles of θ0 with a small radian value. For every θ̄ ∈ Θ, we
compute the control matrix B̄(θ̄). Then, we use Theorem 1 to
compute the estimated optimal cost J ∗ for the current θ̄. This
process is parallelizable to improve computational efficiency.
By exploiting all θ̄ ∈ Θ and the associated J ∗, we select the
best θ̄ and use (7) to obtain the associated control inputs. For
implementation, to precisely follow our definition of control
cost, we should first apply pose optimization and then apply
arm control u∗. However, this separation can be challenging
for the hardware runtime. To address this, we fuse the pose
optimization (if it exists) and the arm control inputs into a
single step. Based on the triangle law of vector addition, the
combined implementation will always result in no greater
cost than the separated implementations. Furthermore, the
cost difference is minimal when the angle change for pose
optimization is sufficiently small.

Remark 1. In general, the highly non-linear relation be-
tween B(θ̄) and θ̄ makes it computationally infeasible to
systematically find the optimal pose θ̄ for estimated control
cost J ∗. Instead, in Algorithm 1, we employ a sample-based
approach to select a candidate set for pose optimization.
This allows us to numerically search for a pose θ̄ that is
better than θ0 in terms of future control costs. A similar
technique has been used in [12]. Increasing the cardinality of
Θ can potentially lead to a better θ̄∗ using more computation,
and the evaluation of θ̄ can be performed in parallel. Fur-
thermore, as we will demonstrate in experiments, optimizing
poses periodically over fixed intervals (not every step) can
also improve tracking performance. Lastly, to make the
pose optimization more efficient, one may leverage deep
learning methods to determine when a pose optimization is
needed [25], and how a candidate set should be chosen [26].

V. EXPERIMENTS

In this section, we evaluate our proposed algorithm
through simulation experiments in Gazebo and a demonstra-
tion using a Fetch mobile manipulator. In the following, we
assume human uncertainties are the source of disturbance,
which is mathematically equivalent if the robot has actuation
disturbances. To simulate human uncertainties, we assume
ϖ(k) ∼ N (0,Σ), where Σ = q · diag(0.015, 0.025, 0.015)
(meters) and q ∈ {0.4, 0.7}. This reflects the tendency
for disturbances to be more pronounced along the y-axis
compared to the x and z-axes, with q being the strength
of these disturbances. We test our algorithm by considering
two trajectories under two cases. For one case, we assume
human future poses are unknown and use LSTM [27] for
pose prediction to obtain r̃ in (1). We use two layers of
LSTM, each containing 50 units and a dense layer (output
layer). The LSTM layers are fed with the sequences of
historic poses, and the output of the layers is the predicted
poses. Details of LSTM implementation are given in the
supplementary material [1]. The experiments are denoted as
AP and BP . We also test the algorithm assuming human
future poses are known as a nominal trajectory r̃, although
the trajectory is still subject to human uncertainties. The
experiments are denoted as AN and BN . Each trajectory has
500 discrete points, with a time interval of τ = 0.1 seconds.
The parameters used for solving the problem (3), are selected
to be H = 3 (MPC horizon) for AP and BP ; H = 8 for AN
and BN . We let R = I9, and κ = 1. We test two different
settings for Q, with Q = 1000 ·I6 or Q = 500 ·I6 to reweigh
the tracking error on the overall cost.

Our experiments follow Algorithm 1, and we repeat the
MPC planning every time step. In each planning horizon,
we chose twelve candidate poses in Θ. While the proposed
algorithm seeks to minimize an expected cost, we define the
true system cost over the entire trajectory as:

Ctotal =

T∑
t=1

e(t)⊤Qe(t) + u(t)⊤Ru(t) + κ|θ̄(t)− θ(t)|22,

which takes into account the costs for the robot’s end effector
tracking error, control input, and pose optimization, T is
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Fig. 2: All trajectories with human uncertainties, Q = 1000 · I6, q = 0.4. The results of trials are represented by dot clouds.

the total number of time steps. We compare our proposed
approach (PO-HU, which considers pose optimization and
human uncertainty) with two baselines: one approach that
considers no pose optimization but human uncertainty (NPO-
HU) and another that considers pose optimization but not
human uncertainty (PO-NHU). Note that we do not evaluate
the no pose optimization and no human uncertainty case, as
it is equivalent to NPO-HU. This equivalence arises because
human uncertainty with zero mean does not affect the control
inputs (but only the expected control cost), as shown in (7).

The dot clouds in Fig. 2 compare tracking performance
across trajectories on the x-y and x-z planes, with the
weighting matrix Q = 1000 · I6 and q = 0.4. A numerical
comparison is further provided in Table I, which shows the
average total cost Ctotal of different algorithms over 100 trials.
Additionally, we also introduce a periodic pose optimization
(pPO-HU) that performs pose optimization every 5 time
steps. This helps to reduce the computational burden when
applied to low-cost devices. For hardware validation, all the
trajectories computed from Gazebo visualized in Fig. 2 have
been executed and successfully reproduced on our hardware
platform to justify their feasibility. The effectiveness of the
proposed algorithm is justified by Fig. 2. In all cases, the
result of PO-HU closely follows the trajectories, whereas the
other two baseline algorithms deviate a lot. This is further
TABLE I: Comparison of Ctotal across Different Algorithms

Traj Q q PO-HU pPO-HU NPO-HU PO-NHU

AP

1000I6
0.4 744.04 841.06 2364.77† 1339.781
0.7 1273.42 1303.88 2394.74 2427.38

500I6
0.4 846.64 847.77 901.58 898.16
0.7 999.66 1003.27 1077.64 1056.52

BP

1000I6
0.4 2436.97 2671.56 5546.44† 3172.04
0.7 3831.34 4083.78 9731.61† 9234.85‡

500I6
0.4 2030.57 2138.46 8752.65† 2409.09
0.7 2324.85 2499.22 9589.51† 7509.28‡

AN

1000I6
0.4 686.94 769.55 1932.83† 1102.95
0.7 1151.33 1292.57 2342.11† 2384.16‡

500I6
0.4 829.59 835.64 851.60 852.53
0.7 978.52 986.46 1013.69 1017.27

BN

1000I6
0.4 2306.64 2540.73 3759.09† 2968.25
0.7 3782.70 3943.75 8694.57† 7220.29‡

500I6
0.4 2013.31 2041.27 2261.32 2209.01
0.7 2293.11 2481.39 5612.76† 4301.46‡

reinforced by the numerical results in Table I. Specifically,
in the table, we use † in NPO-HU, and ‡ in PO-NHU to
highlight the entries where the differences are significant.
The fewer highlighted entries in PO-NHU imply that pose
optimization has a greater impact on the total cost than the
characterization of human uncertainty. Additionally, when
performing pose optimization every five time steps (pPO-
HU), it performs better than the other two, although having a
small gap compared to performing pose optimization at every
time step (PO-HU). Finally, from both figures and tables, we
observe that in general, the robot performs better in AN , BN .
This is because robots have access to nominal trajectories of
human future poses, which is more informative than human
prediction cases AP , BP . This is especially true for trajectory
B because it is more complex and has sharp turns, where the
predicted human future poses can be inaccurate.

PO-HU

NPO-HU

PO-NHU Cumulative Cost PO-NHU
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Fig. 3: Accumulated cost comparison for trajectory AN , with
Q = 1000 · I6, R = I9, q = 0.4.

Fig. 3 visualizes the accumulated cost over time and the
cost at each time step for trajectory AN . A comparison of
cost and peaks reveals the effectiveness of our algorithm in
navigating complex trajectory segments, particularly during
sharp turns. Furthermore, it is observed that towards the end
of the trajectory, the costs associated with NPO-HU explode
because the robot admits a bad pose and can hardly reach
and track the remaining trajectory. In contrast, the costs for
the methods with pose optimization remain relatively stable.
Similar trends are seen for other cases.

Fig. 4 shows the average execution time of the proposed
algorithm for different planning horizons, averaging over 500



Fig. 4: Execution time comparison with different planning
horizon, |Θ| = 12. Test computer uses AMD 5975WX.

trials. Steps (4-9) of the proposed algorithm can be fully
parallelized, thus the computation time for pose optimization
only increases slightly, as long as the size of the set |Θ| = 12
is smaller than the number of computing threads. Further-
more, the execution time for each algorithm increases only
mildly across different values of H . The main computation
time is spent on the one-time computation of the Jacobian
matrix. The minor increase is due to more iterations in
solving the DARE (cf. equation (6)). This concludes that our
proposed PO-HU method does not introduce significant extra
execution time compared with other baseline algorithms.

VI. CONCLUSIONS AND FUTURE WORK

We studied the control of a mobile manipulator to perform
human-robot co-transportation tasks. By modeling human
uncertainties and the whole-body kinematics of the robot, we
formulated a new human-disturbance-aware MPC tracking
problem with pose optimization. We proposed an algorithm
with a two-step iterative design, equipped with an inner
loop that computes a disturbance-aware DARE to estimate
the control cost, and an outer loop that selects the best
pose with the minimum cost from a candidate set. The
correctness and effectiveness of the proposed approach have
been validated both theoretically and experimentally. Future
work will include the generalization of the algorithm to
multi-human multi-robot collaborative tasks.
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