
Beacon: A Naturalistic Driving Dataset During Blackouts for
Benchmarking Traffic Reconstruction and Control

Supriya Sarker, Iftekharul Islam, Bibek Poudel, and Weizi Li

Abstract— Extreme weather and infrastructure vulnerabilities
pose significant challenges to urban mobility, particularly at
intersections where signals become inoperative. To address
this growing concern, we introduce Beacon, a naturalistic
driving dataset capturing traffic dynamics during blackouts
at two major intersections in Memphis, TN, USA. The dataset
provides detailed traffic movements, including timesteps, origin,
and destination lanes for each vehicle over four hours of
peak periods. We analyze traffic demand, vehicle trajectories,
and density across different scenarios, demonstrating high-
fidelity reconstruction under unsignalized, signalized, and mixed
traffic conditions. We find that integrating robot vehicles (RVs)
into traffic flow can substantially reduce intersection delays,
with wait time improvements of up to 82.6%. However, this
enhanced traffic efficiency comes with varying environmental
impacts, as decreased vehicle idling may lead to higher overall
CO2 emissions. To the best of our knowledge, Beacon is the
first publicly available traffic dataset for naturalistic driving
behaviors during blackouts at intersections.

I. INTRODUCTION

Modern urban infrastructure is vulnerable to increasing
extreme weather events and other disturbances. These factors
can lead to power outages, incapacitating critical urban
systems, with traffic control mechanisms being significantly
affected [1]. Traffic lights, the backbone of urban traffic
management, are entirely dependent on electricity. Thus, their
failure during blackouts will result in gridlocks and increased
accident risks, especially at the intersections, where over 45%
of traffic crashes in the U.S. occur [2]. During blackouts,
intersections can remain uncontrolled for extended periods,
causing widespread congestion and crash hotspots in a city [3],
[4]. To address these challenges and develop effective traffic
management solutions during blackouts, datasets that capture
real-world traffic behavior during power outages are essential.
However, collecting this type of data requires naturally
occurring blackouts, as deliberately creating a blackout for
data collection is impractical and unsafe.

In response to this critical need, we introduce Beacon,
a dataset containing four hours of traffic dynamics during
peak hours (midday and afternoon), captured during a
blackout in Memphis, TN, USA. Beacon provides detailed
traffic movements at two real-world intersections shown
in Fig. 1, offering information such as the time, origin,
and destination lanes of all vehicles. This naturalistic driv-
ing dataset presents a unique opportunity to study and
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Fig. 1. Top-down views of the two intersections in Memphis,
TN, USA where blackouts occurred and data was captured. Lane
numbering and traffic flow directions are also shown.

analyze traffic behaviors at complex intersections during
blackouts. Beacon can be obtained at https://github.
com/Fluidic-City-Lab/Beacon_dataset.

Traffic reconstruction has gained significant attention in
intelligent transportation research [5], enabling the analysis
of microscopic patterns like stop-and-go waves [6] and
macroscopic dynamics like citywide congestion propaga-
tion [7]. Unlike most datasets that capture general road
conditions without considering rare disruptions [8]–[10], our
work presents the first real-world dataset and analysis of
unsignalized intersection traffic during blackouts, offering
three key contributions:

• We introduce Beacon—a driving dataset enabling anal-
ysis of natural driver behaviors and adaptation at real-
world, unsignalized intersections.

• We demonstrate Beacon’s utility through high-fidelity
traffic reconstruction under three cases: unsignalized
conditions during blackout, signalized conditions after
power restoration, and mixed traffic control with both
human-driven and robot vehicles (RVs).

• Our analysis reveals various key insights about traffic
behavior and control strategies during infrastructure
disruptions: (1) RVs can effectively coordinate traffic
flow, reducing wait times by up to 82.6%; (2) the
effectiveness of traffic management strategies depends
on traffic demand, with high-demand intersections bene-
fiting more from automated coordination; and (3) while
introducing RVs improves efficiency, their impact on
emissions varies—reducing idle time but potentially
increasing overall CO2 output.

By providing both a benchmark dataset and comprehensive
analysis across different reconstruction and control strategies,
we aim to accelerate research in traffic resilience, autonomous
vehicle coordination, and the development of intelligent
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transportation systems that can maintain efficient flow during
infrastructure disruptions. Our findings highlight the need for
adaptive deployment strategies that balance traffic efficiency
with environmental considerations, while our benchmarking
framework enables systematic evaluation of such strategies.

II. RELATED WORK

A. Traffic Datasets and Simulation

Real-world traffic datasets are essential for developing
and validating simulation environments that reflect diverse
traffic conditions. Shen et al. [11] analyze two decades
(2001–2021) of traffic collision reconstruction using tools
like CiteSpace, VOSviewer, and SciMAT. Li et al. propose
ScenarioNet [12], an open-source platform for large-scale
traffic scenario modeling and simulation for autonomous
driving. It aggregates and standardizes data from real-world
sources such as Waymo [13], nuScenes [14], and Argov-
erse [15]. Another contribution by Li et al., MetaDrive [16],
supports both single- and multi-agent reinforcement learning
in procedurally generated environments. It integrates diverse
sensor modalities, including LiDAR, RGB, semantic maps,
and first-person views. Amini et al. present VISTA 2.0 [17],
a data-driven simulator designed to improve perception-to-
control robustness by synthesizing realistic multi-sensor data
(e.g., RGB, 3D LiDAR, event cameras) from high-fidelity
datasets. Furthermore, AWSIM [18] is a 3D simulation
platform for Autoware, enabling realistic AV testing using
LiDAR and other sensors. It supports dynamic traffic with
pedestrians and vehicles, allowing evaluation of decision-
making and safety in complex environments.

B. Traffic Reconstruction and Control

Traffic reconstruction and control are central to trans-
portation engineering. Sanchez et al. [6] use the Caltrans
PeMS dataset to implement a kernel-based method that
identifies stop-and-go events and congestion hotspots. Bilotta
and Nesi [19] propose a model that resolves traffic data
indeterminacy by solving partial differential equations (PDEs)
and estimating junction flow using real-time sensor inputs.
Qi et al. [20] reconstruct vehicle trajectories using ALPR
data, applying travel-time-based trip segmentation, a modified
K-shortest-path algorithm, and auto-encoder-based trajectory
selection. Bakowski and Radziszewski [21] assess the effects
of road reconstruction on traffic and noise, finding that noise
levels can drop even with increased vehicle volume, offering
insight into environmental impacts of urban modifications.

Recent traffic control approaches incorporate autonomous
vehicles as dynamic control agents. Čičić et al. [22] use
CAVs as mobile sensors and actuators, estimating local traffic
density and controlling congestion by dissipating stop-and-go
waves through simulation. Mixed traffic control—managing
interactions between AVs and HVs—has gained traction
as a promising solution to urban traffic challenges. Wu et
al. [23] show that AVs can dampen stop-and-go waves to
stabilize traffic, while Peng et al. [24] and Yan and Wu [25]
demonstrate how CAVs enhance intersection throughput and
reduce conflicts. Wang et al. [26], [27] develop a decentralized

control framework that significantly lowers waiting times at
unsignalized intersections. Villarreal et al. [28] utilize image-
based observations, and Poudel et al. [29], [30] improve
reliability by incorporating real driving profiles. Islam et
al. [31] validate the potential of heterogeneous mixed traffic
control to enhance efficiency and cut emissions across varied
traffic settings.

III. DATA COLLECTION AND ANALYSIS

A. Data Collection

Beacon provides a valuable benchmark for urban traffic
analysis by focusing on two intersections with characteristic
four-way layouts on major arterial roads [8], [32]. It contains
4 hours of traffic data collected during a blackout on July 19,
2023, from two Memphis, TN intersections shown in Fig. 1:
Walnut Grove-Goodlett St. (lat: 35.1315, lon: -89.9255) and
Walnut Grove-Mendenhall Rd. (lat: 35.1308, lon: -89.8985).
We manually annotate the dataset by carefully examining the
recorded videos. To distinguish time and location, we use
WGG-N and WGG-AN to refer to Walnut Grove-Goodlett at
noon (12 PM–1 PM) and afternoon (5 PM–6 PM), respectively.
Similarly, WGM-N and WGM-AN denote Walnut Grove-
Mendenhall during the same time intervals.

To validate the sufficiency of the one-hour data, we analyze
the statistical stability of traffic throughput. The plots in Fig. 2
show the cumulative average of vehicle arrivals per minute,
which converge to a stable mean for all scenarios, with the
minor exception of a final dip in the WGM-N case caused by
a brief lull of traffic. This convergence confirms that the one-
hour period is sufficient to establish a representative baseline
of intersection performance.

B. Data Analysis

We analyze Beacon in terms of the traffic demand and
vehicle trajectories across all scenarios.

1) Traffic Demand: Table I shows the traffic demand
for each scenario, broken down by direction. The data
reveals variations in traffic volume and directional flow across
different times and locations. WGG-N sees the lowest demand
with 1,983 vehicles, while the same intersection experiences
the highest demand 2,453 vehicles during the afternoon peak
hour, i.e., WGG-AN. At a different intersection, WGM-N
experiences less demand during noon with 2,033 vehicles
compared to WGM-AN which has the demand 2,342 vehicles

Fig. 2. Statistical stability of traffic flows across all scenarios. The cumulative
average throughput quickly converges to a stable mean, demonstrating that
the traffic reaches a steady state. This validates that the one-hour data
collection period is representative of intersection dynamics.



during the afternoon peak hour. The directional patterns also
differ at the two intersections. At WGG, eastbound traffic
dominates, while at WGM, westbound traffic is predominant.

2) Vehicle Trajectory: Both intersections demonstrate
strong east-west traffic flows along Walnut Grove Road,
indicating its role as a major arterial route. At WGG, the
most significant movements during afternoon are westbound-
straight (248 vehicles) and eastbound-straight (228 vehicles).
WGM, on the other hand, exhibits more balanced east-west
flows, with consistent traffic volumes throughout the day.

While at both intersections, proceeding straight is the most
common maneuver, other turning behaviors vary by direction
and location. At WGG, we notice a strong preference for
northbound right turns over left turns in both scenarios, while
southbound left turns outnumber right turns. The pattern
differs at WGM, where northbound left turns significantly
surpasses right turns in both scenarios. These differences in
turning preferences are likely linked to the surrounding road
network, and the destinations accessible from each turn.

IV. TRAFFIC RECONSTRUCTION

Using Beacon, we first reconstruct traffic during the
data collection period—enabling various traffic engineering
applications for analyzing vehicle behavior at complex
intersections during blackouts.

We obtain the road networks of WGG and WGM from
OpenStreetMap (OSM) [33] and convert them into simulation-
ready formats using SUMO’s NETCONVERT tool [34].
During conversion, we preserve key OSM road attributes
such as lane counts, intersection layouts, and geometries.
From Beacon, we extract each vehicle’s start lane, end lane,
and the timestep when it reaches the head of its starting lane
to form its route. This information is then used in SUMO
to simulate and reconstruct traffic flow. Fig. 3 illustrates the
reconstructed scenarios: WGG-N (top left), WGG-AN (top
right), WGM-N (bottom left), and WGM-AN (bottom right).

To evaluate the accuracy of our traffic reconstruction,
we compare the reconstructed traffic in SUMO with the
recorded data. We focus on three types of potential mismatch:
start lane, which refers to the vehicle’s departure lane; end
lane, the arrival lane of a vehicle; and timestep, which
captures differences in vehicle timing at the head of the
start lane. The evaluation results are provided in Table II.
First, no mismatches are found with respect to the start

TABLE I
THE TRAFFIC DEMANDS OF ALL FOUR SCENARIOS IN BEACON ARE

SHOWN. WGG AND WGM REPRESENT TWO DIFFERENT INTERSECTIONS,
RESPECTIVELY. N REPRESENTS NOON (12PM–1PM) AND AN

REPRESENTS AFTERNOON (5PM–6PM). THE LARGEST DEMANDS AT

VARIOUS DIRECTIONS ARE HIGHLIGHTED.

Scenario
North- South- East- West-

Total Demand
bound bound bound bound

WGG-N 280 410 685 608 1, 983

WGG-AN 425 629 794 605 2, 453

WGM-N 403 434 527 669 2, 033

WGM-AN 494 523 625 700 2, 342

Fig. 3. Traffic reconstruction via the Beacon dataset demonstrating
vehicle behaviors at complex intersections during blackouts.

lane, indicating that all vehicles depart from the correct lane.
However, discrepancies are observed in both the end lane
and timesteps. These inconsistencies arise because SUMO’s
vehicle generation process may not follow the imported
data exactly, even when vehicle timestep information is
documented accurately in the route file. In addition, upon
exiting the intersection, some vehicles chose a different arrival
lane compared to imported data. This is due to SUMO’s
internal lane-changing mechanisms, which is beyond our
control. Despite these differences, our reconstruction achieves
high accuracy, with match rates exceeding 98% at WGG.
Although WGM shows slightly lower accuracy due to end lane
mismatches, it still maintains match rates above 91%. While
trajectory-based metrics (e.g., RMSE, path deviation) offer
finer-grained evaluations, they require continuous per-frame
vehicle positions, which are unavailable in our dataset. Our
evaluation metrics instead focus on route-level correctness
and timing consistency—practical proxies that reflect key
spatiotemporal behaviors relevant to intersection dynamics.

V. SIGNALIZED INTERSECTIONS

After analyzing blackout scenarios, we next study traffic at
the same intersections with signal control. This comparison

TABLE II
COMPARING TRAFFIC RECONSTRUCTION WITH RECORDED DATA. OUR

RECONSTRUCTION DEMONSTRATES HIGH ACCURACY, MAINTAINING

MATCH RATES ABOVE 91% ACROSS ALL SCENARIOS.

Scenario #vehicles
Start lane End lane Timestep Total Match
mismatch mismatch mismatch mismatch rate (%)

WGG-N 1, 962 0 38 0 38 98.07

WGG-AN 2, 452 0 10 0 10 99.59

WGM-N 2, 032 0 5 191 196 91.60

WGM-AN 2, 342 0 6 199 205 91.25



offers insights into effective traffic management at complex
intersections. Additionally, incorporating traffic signal phase
information for WGG and WGM enriches the dataset.

Once power was restored, we recorded traffic light behavior
from all approaches at both intersections and extracted their
phase sequences, shown in Fig. 5. At WGG, the sequence
repeats as 7, 4, 29, 4, 20, 4, 4, 40, and 4 seconds; for WGM,
it is 22, 4, 80, 4, 42, 4, 4, 113, and 4 seconds. Each phase
controls green, yellow, and red lights for specific directions,
ensuring orderly flow.

We simulate these signalized scenarios in SUMO using the
same traffic input as Beacon, with examples shown in Fig. 4.
Although both blackout and signalized cases use SUMO’s
default IDM model [35], we observe key differences. In
blackout scenarios, vehicles self-organize to avoid collisions,
often leaving space at intersections. With traffic lights, vehi-
cles must stop during red phases, resulting in longer queues.
Additionally, signal control enforces turn priority—right turns
always have precedence over left turns—whereas blackout
traffic treats all directions with equal priority.

To quantitatively assess these differences, we compare
three key metrics in Table III: average wait time, travel time,
and CO2 emissions. Wait time reflects how long vehicles
are delayed at the intersection; travel time is the average
trip duration; and emissions are computed using SUMO’s
HBEFA3-based model [36], with vehicles classified as
“PC_G_EU4” passenger cars. Across all scenarios, blackout
(unsignalized) operation consistently reduces delay, with lower
travel and wait times than fixed-time signals. This result
suggests that self-organizing human behavior can outperform
pre-timed signals, especially in low to moderately loaded
intersections. However, emissions trends are more nuanced.
In three scenarios with moderate demand, blackout also
yields lower emissions by avoiding the stop-and-go cycles of
signal control. Conversely, in the highest-demand scenario
(WGG-AN), the efficiency likely requires more frequent
and aggressive vehicle accelerations to maintain throughput,
an emission-intensive driving cycle that results in higher
overall CO2 emissions. This highlights a fundamental trade-
off, demonstrating that optimizing for traffic delay does not
guarantee a corresponding environmental benefit.

To validate our simulation, we compare it with the recorded
traffic data. Since traffic lights alter vehicle timing, we focus
the evaluation on start and end lanes. Results are shown in
Table IV. All scenarios achieve over 84% accuracy, with
WGG performing nearly perfectly. Compared to blackout
reconstruction, signalized simulations show slightly higher
end-lane mismatches. This occurs because red lights cause
vehicle queues that are released in bursts, leading to end-lane
congestion. SUMO’s internal lane-changing logic may redirect
vehicles to less crowded lanes, resulting in mismatches. The
mismatch is more pronounced at WGM due to its complex
geometry. Factors such as more lanes, skewed intersection
angles, and crosswalks contribute to higher collision risk [37].
While real drivers navigate cautiously and stay in-lane, SUMO
may reroute vehicles to perceived safer lanes, increasing end-
lane deviations.

TABLE III
PERFORMANCE COMPARISON OF SIGNALIZED VS. UNSIGNALIZED

(BLACKOUT) CONTROL. WHILE THE UNSIGNALIZED BLACKOUT

OPERATION CONSISTENTLY YIELDS SUPERIOR TRAVEL AND WAIT TIMES

ACROSS ALL SCENARIOS, IT REVEALS A CRITICAL TRADE-OFF WITH

ENVIRONMENTAL IMPACT, LEADING TO HIGHER CO2 EMISSIONS IN THE

HIGH-DEMAND WGG-AN SCENARIO.

Scenario Control
Avg Travel

Time (s)
Avg Waiting

Time (s)
CO2 per

timestep (mg)

WGG-N Signalized 97.86 17.82 2360.11
Blackout 82.48 1.91 2304.54

WGG-AN Signalized 66.75 16.51 4191.62
Blackout 53.35 1.96 4716.11

WGM-N Signalized 134.25 46.55 2399.35
Blackout 116.22 16.40 2303.23

WGM-AN Signalized 136.35 48.11 2400.33
Blackout 123.36 20.05 2306.93

Fig. 4. Traffic simulation using the Beacon dataset as input at
signalized intersections WGG and WGM.

VI. MIXED TRAFFIC CONTROL

Using Beacon as a benchmark, we evaluate advanced
control strategies at real-world WGG and WGM intersections.
As a case study, we examine mixed traffic control where
robot vehicles (RVs) coordinate with human-driven vehicles
(HVs) to optimize flow. Building on Wang et al. [26], we
assess RV control effectiveness using unsignalized traffic
data—providing insights for future RV-integrated systems.

Mixed traffic control can be modeled as a multi-agent re-
inforcement learning problem, where RVs act as independent
agents in a partially observable environment. The system
is formulated as a Partially Observable Markov Decision
Process (POMDP), defined by the tuple (S,A, T,R,O,Z, δ),
where S is the traffic state (e.g., positions, velocities), A the
action space for each RV, and T (s′|s, a) the state transition



TABLE IV
COMPARING TRAFFIC SIMULATION OF SIGNALIZED INTERSECTIONS WITH

RECORDED DATA. OUR SIMULATION CLOSELY ALIGNS WITH THE

REAL-WORLD DATA ACROSS ALL SCENARIOS.

Scenario #vehicles
Start lane End lane Total Match
mismatch mismatch mismatch rate (%)

WGG-N 1, 961 0 12 12 99.39

WGG-AN 2, 135 0 96 96 95.51

WGM-N 2, 031 0 287 287 85.87

WGM-AN 2, 340 0 369 369 84.23

Fig. 5. Top: Photographs of the Walnut Grove-Goodlett (left) and
Walnut Grove-Mendenhall (right) intersections captured during regular traffic
conditions with functional traffic lights. Bottom: Corresponding signal timing
phases of the traffic lights at the two intersections.

function. The reward function R(s, a) reflects objectives
such as reduced wait time and improved throughput. Due to
partial observability, each RV accesses O with observation
probabilities Z(o|s). Each agent follows a policy πϕ(at|st)
to select actions that maximize the cumulative discounted
reward Rt =

∑T
i=t δ

i−tri, with discount factor δ ∈ [0, 1).
This framework enables RVs to learn effective strategies under
uncertainty from human-driven behavior.

In our implementation, the action space A is a discrete
‘Stop/Go’ command set. HVs are governed by the Intelligent
Driver Model (IDM). RVs use a hybrid policy, executing ‘Go’
(max acceleration) or ‘Stop’ (a = −u2/2dint, based on speed
u and distance dint) actions within 30m of the intersection,
while defaulting to IDM otherwise. The reward function
R(s, a) is designed to improve throughput and reduce delays.
The observation ot ∈ O is a vector of local traffic states
including queue lengths, wait times, intersection occupancy,
and the RV’s own distance to the intersection. We train a
single, shared policy using Rainbow DQN [38] with a 3-layer
MLP (512 units/layer), trained for 1,000 iterations with a
learning rate of 5×10−4 and a discount factor δ = 0.99. Fig. 6
shows reconstructed mixed traffic using Beacon, where red
vehicles are RVs and white vehicles are HVs. Each scenario
has 60% RV penetration rate, but any penetration rate in the
range [0, 100] can be selected.

To evaluate mixed traffic control performance, we analyze
metrics from 1000-second simulations. Table V shows that RV
effectiveness depends on traffic volume. At the simpler WGG

Fig. 6. Reconstructed mixed traffic using Beacon: (a) WGG-N, (b) WGG-
AN, (c) WGM-N, (d) WGM-AN. Red = robot vehicles (RV), white =
human-driven vehicles (HV), with 60% RV penetration. Reconstruction
enables RVs to learn actions that improve traffic efficiency.

intersection, RVs provide minimal benefit under low traffic,
suggesting that coordination is not critical when demand is
low. In contrast, at the more complex WGM intersection, RVs
significantly reduce both wait and travel times, particularly
during high-traffic periods. Figure 7 visualizes these trends
across RV penetration rates for all four scenarios. In WGG-N,
low density leads to minimal congestion, limiting the potential
gains from RVs. At WGM, however, higher penetration (80–
100%) yields noticeable performance improvements under
heavier traffic. While wait times at WGM are lower (Fig. 7,
left) , travel times remain higher due to the intersection’s
skewed geometry. As discussed earlier, cautious driving
behavior in WGM leads to slower navigation, explaining
the longer travel times in both WGM-N and WGM-AN.
Regarding emissions, CO2 outcomes vary. In WGG-N, low
density naturally leads to lower emissions. In WGM scenarios,
RVs help reduce emissions by minimizing stop-and-go
patterns. However, in WGG-AN, emissions rise despite lower
delays. This is because RVs increase throughput under heavy
demand by accelerating more frequently to maintain flow,
which results in higher per-vehicle energy use. This highlights
a key trade-off: reducing delays doesn’t always translate
to lower emissions, especially when demand levels require
aggressive acceleration to sustain efficiency.

To further investigate the traffic volume threshold hy-
pothesis, we conduct additional simulations at the WGG
intersection, increasing the traffic demand at each direction
from WGG-AN by 25% and 50%. Table VI presents the
results. With a 25% demand increase, we observe that
incorporating RVs reduces wait times by upto 82.6% and
travel time by 10.3%. However, this improvement comes



Fig. 7. Comparison of wait time (left), travel time (center), and CO2 emissions (right) across four scenarios (WGG-N, WGG-AN, WGM-N, WGM-AN)
under different RV penetration rates. RVs significantly reduce wait times, especially at high-demand intersections like WGM-AN, where 100% RVs achieve
an 82.6% reduction. In contrast, the impact is minimal at lower-demand intersections like WGG-N. Travel times remain stable across scenarios, with notable
improvements at WGM intersections. However, CO2 emissions show mixed trends with the increase of RV penetration.

TABLE V
PERFORMANCE METRICS FOR MIXED TRAFFIC SCENARIOS WITH VARYING

RV PENETRATION RATES ACROSS FOUR INTERSECTIONS. AT THE

COMPLEX WGM INTERSECTION, WAIT TIMES SIGNIFICANTLY DROP. THE

SIMPLER WGG INTERSECTION SHOWS SMALLER CHANGES. CO2

EMISSIONS FOLLOW A NON-LINEAR TREND, REFLECTING TRADE-OFFS

BETWEEN EFFICIENCY AND ENVIRONMENTAL IMPACT.

Scenario Metric HVs RV Penetration Rate

20% 40% 60% 80% 100%

WGG-N

Wait Time (s) 0.16 0.19 0.27 0.44 0.47 0.41
Travel Time (s) 83.82 84.38 84.79 86.08 86.25 86.22
CO2 Emissions
(mg/s)

1642 1644 1640 1627 1626 1630

WGG-AN

Wait Time (s) 0.78 3.20 2.73 2.86 3.56 2.59
Travel Time (s) 65.01 68.34 65.80 67.47 68.04 64.61
CO2 Emissions
(mg/s)

3842 3405 3501 3424 3350 3529

WGM-N

Wait Time (s) 3.60 3.72 3.08 2.56 1.52 1.88
Travel Time (s) 112.06 112.43 109.39 104.90 99.72 103.62
CO2 Emissions
(mg/s)

1452 1402 1422 1443 1493 1470

WGM-AN

Wait Time (s) 16.21 2.11 1.71 1.98 1.72 1.06
Travel Time (s) 127.36 98.86 98.16 100.44 99.00 95.73
CO2 Emissions
(mg/s)

1323 1535 1537 1514 1527 1550

with a 7.2% increase in CO2 emissions. The benefits of
RVs become even more pronounced with a 50% increase
in traffic demand. RVs decrease the overall wait times by
47.1%, and travel times by 21.8%. As wait times decrease
and throughput increases with higher RV penetration, we
observe a corresponding increase in CO2 emissions. This
aligns with vehicles idling less and moving more at higher
speeds, which generally leads to higher emission rates.

Overall, our analysis demonstrates that while RVs can
significantly improve traffic efficiency during blackout, their
effectiveness depends on factors such as traffic volume
and penetration rate, highlighting the need for adaptive
deployment strategies that balance traffic flow improvements
with environmental considerations.

VII. CONCLUSION AND FUTURE WORK

We introduce Beacon, a naturalistic driving dataset col-
lected during a blackout at two unsignalized intersections in

TABLE VI
PERFORMANCE METRICS AT WALNUT GROVE-GOODLETT UNDER

INCREASED DEMAND. WITH 25% HIGHER DEMAND, 80% RV
PENETRATION CUTS WAIT TIME FROM 6.48S TO 1.13S AND TRAVEL TIME

FROM 95.53S TO 85.72S. AT 50% HIGHER DEMAND, IT REDUCES WAIT

FROM 63.19S TO 33.47S AND TRAVEL FROM 166.97S TO 130.51S. CO2

EMISSIONS RISE IN BOTH CASES.

Demand
Increase

Metric HVs RV Penetration Rate

20% 40% 60% 80% 100%

25%

Wait Time (s) 6.48 7.81 4.15 2.33 1.13 3.06
Travel Time (s) 95.53 97.14 91.48 88.44 85.72 90.47
CO2 Emissions
(mg/s)

1703 1707 1759 1793 1825 1799

50%

Wait Time (s) 63.19 49.18 43.33 36.60 33.47 52.31
Travel Time (s) 166.97 162.92 146.27 136.06 130.51 129.39
CO2 Emissions
(mg/s)

1440 1489 1522 1565 1596 1864

Memphis, TN, USA. By analyzing and reconstructing traffic
scenarios under unsignalized, signalized, and mixed traffic
conditions, Beacon achieves high reconstruction accuracy
(over 98% at simpler intersections) and serves as a valuable
benchmark for advancing research in traffic reconstruction and
control. Our results show the potential of robot vehicles (RVs)
to improve traffic efficiency at high-demand intersections,
reducing wait times by up to 82.6%, though CO2 emissions
vary with traffic density and penetration rates.

Challenges such as incomplete observations and human
driver variability remain open. Future work will expand
Beacon to include more intersections, varied scenarios, and
longer timeframes, enabling broader use. We also plan
to explore advanced reinforcement learning and adaptive
reward functions to optimize traffic efficiency, safety, and
sustainability. By addressing these challenges, Beacon aims
to support the development of intelligent, resilient traffic
management systems for complex real-world conditions.
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