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Abstract— With the growing use of machine learning algo-
rithms and ubiquitous sensors, many ‘perception-to-control’
systems are being developed and deployed. To ensure their
trustworthiness, improving their robustness through adversarial
training is one potential approach. We propose a gradient-free
adversarial training technique, named AutoJoin, to effectively
and efficiently produce robust models for image-based maneu-
vering. Compared to other state-of-the-art methods with testing
on over 5M images, AutoJoin achieves significant performance
increases up to the 40% range against perturbations while
improving on clean performance up to 300%. AutoJoin is also
highly efficient, saving up to 86% time per training epoch
and 90% training data over other state-of-the-art techniques.
The core idea of AutoJoin is to use a decoder attachment to
the original regression model creating a denoising autoencoder
within the architecture. This architecture allows the tasks
‘maneuvering’ and ‘denoising sensor input’ to be jointly learnt
and reinforce each other’s performance.

I. INTRODUCTION

The wide adoption of machine learning algorithms and
ubiquitous sensors have together resulted in numerous
tightly-coupled ‘perception-to-control’ systems being de-
ployed in the wild. In order for these systems to be trustwor-
thy, robustness is an integral characteristic to be considered
in addition to their effectiveness. Adversarial training aims
to increase the robustness of machine learning models by
exposing them to perturbations that arise from artificial
attacks [1], [2] or natural disturbances [3]. In this work, we
focus on the impact of these perturbations on image-based
maneuvering and the design of efficient adversarial training
for obtaining robust models. The test task is ‘maneuvering
through a front-facing camera’–which represents one of the
hardest perception-to-control tasks since the input images are
taken from partially observable, nondeterministic, dynamic,
and continuous environments.

Inspired by the finding that model robustness can be
improved through learning with simulated perturbations [4],
effective techniques such as AugMix [5], AugMax [6],
MaxUp [7], and AdvBN [8] have been introduced for lan-
guage modeling, and image-based classification and segmen-
tation. The focus of these studies is not efficient adversarial
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training for robust maneuvering. AugMix is less effective to
gradient-based adversarial attacks due to the lack of suffi-
ciently intense augmentations; AugMax, based on AugMix,
is less efficient because it uses a gradient-based adversarial
training procedure, which is also a limitation of AdvBN.
MaxUp requires multiple forward passes for a single data
point to determine the most harmful perturbation, which
increases computational costs.

Recent work by Shen et al. [3] represents the state-of-
the-art, gradient-free adversarial training method for achiev-
ing robust maneuvering against image perturbations. Their
technique adopts Fréchet Inception Distance (FID) [9] to
determine distinct intensity levels of the perturbations that
minimize model performance. Afterwards, datasets of single
perturbations are generated. Before each round of training,
the dataset that can minimize model performance is selected
and incorporated with the clean dataset for training. A fine-
tuning step is also introduced to boost model performance
on clean images. While effective, examining the perturbation
parameter space via FID adds complexity to the approach and
using distinct intensity levels limits the model generalizabil-
ity and hence robust efficacy. The approach also requires
generating large datasets (2.1M images) prior to training,
burdening computation and storage. Additional inefficiency
and algorithmic complexity occur at training as the pre-
round selection of datasets requires testing against perturbed
datasets, resulting in vast data passing through the model.

We aim to develop a gradient-free and efficient adversarial
training technique for robust maneuvering. Fig. 1 illustrates
our approach, AutoJoin. We divide a steering angle pre-
diction model into an encoder and a regression head. The
encoder is attached by a decoder to form a denoising autoen-
coder (DAE). Using the DAE alongside the prediction model
is motivated by the assumption that prediction on clean data
is easier than on perturbed data. The DAE and the prediction
model are jointly learnt: when perturbed images are forward
passed, the reconstruction loss is added with the regression
loss, enabling the encoder to simultaneously improve on
‘maneuvering’ and ‘denoising sensor input.’ AutoJoin en-
joys efficiency as the extra computational cost stems only
from passing the intermediate features through the decoder.
AutoJoin is also easier to implement than Shen et al. [3] as
perturbations are randomly sampled within a moving range
that is determined by linear curriculum learning [10]. The
FID is used minimally to determine the maximum intensity
of a perturbation. The model generalizability and robustness



are significantly improved due to extensive exploration of the
perturbation parameter space, and ‘denoising sensor input’
provides the denoised training data for ‘maneuvering.’

We test AutoJoin on four real-world driving datasets:
Honda [11], Waymo [12], Audi [13], and SullyChen [14],
which total over 5M clean and perturbed images and show
AutoJoin achieves the best performance on the maneu-
vering task while being the most efficient. For example,
AutoJoin outperforms [3] up to 20% in accuracy and 43%
in error reduction using the Nvidia [15] backbone, and up to
44% error reduction compared to other adversarial training
techniques when using the ResNet-50 [16] backbone. Auto-
Join is also highly efficient as it saves 8% per epoch time
compared AugMix [5] and saves 86% per epoch time and
90% training data compared to Shen et al. [3].

We provide extensive ablation studies. For example, we
find that using all perturbations (discussed in Sec. III-A)
instead of a subset can avoid up to a 45% accuracy reduction
and 51% error increase. We also find that not ensuring all
perturbations are seen during learning and using distinct
intensities from Shen et al. [3], as opposed to random in-
tensities, can cause up to a 16% error increase. Furthermore,
we observe that incorporating the denoised images generated
by the DAE into the training process leads to a decrease in
accuracy by up to 10% and an increase in error by 42%.
The project code and supplemental material is available at
https://github.com/Fluidic-City-Lab/AutoJoin.

II. RELATED WORK

Most adversarial training techniques against image per-
turbations to date have focused on image classification. For
example, AugMix [5] enhances model robustness and gen-
eralizability by layering randomly sampled augmentations
together. AugMax [6], a derivation of AugMix, trains on
AugMix-generated images and their gradient-based adver-
sarial variants. MaxUp [7] stochastically generates multiple
augmented images of a single image and trains the model on
the perturbed image that minimizes the model’s performance.
As a result, MaxUp requires multiple passes of data through
the model for determining the most harmful perturbation.
AdvBN [8] is a gradient-based adversarial training technique
that switches between batch normalization layers based on
whether the training data is clean or perturbed. It achieves
state-of-the-art performance when used with techniques such
as AugMix on ImageNet-C [17].

Recently, Shen et al. [3] has developed a gradient-free
adversarial training technique against image perturbations.
Their work uses Fréchet Inception Distance (FID) [9] to se-
lect distinct intensity levels of perturbations. During training,
the intensity that minimizes the current model’s performance
is adopted. While being the state-of-the-art method, the al-
gorithmic pipeline combined with pre-training dataset gener-
ation are inefficient. First, an extensive analysis is needed to
determine five intensity levels of perturbations. Second, the
data selection process during training requires testing various
combinations of perturbations and their distinct intensity
levels. Third, significant costs are required for generating

the pre-training datasets. In contrast, AutoJoin uses minimal
FID analysis to obtain one point instead of five, which
is then used for a range of intensities instead of having
distinct intensities. AutoJoin also discards the mid-training
data selection process in favor of ensuring all perturbations
are seen each epoch. Lastly, AutoJoin generates perturbed
datasets online during training.

DAEs have been used to improve model robustness for
driving [18]–[20]. For example, Wang et al. [21] use an
autoencoder to improve the accuracy of steering angle
prediction by removing various roadside distractions such
as trees or bushes. Their focus is not robustness against
perturbed images as only clean images are used in training.
DriveGuard [22] explores different autoencoder architectures
on adversarially degraded images that affect semantic seg-
mentation rather than the steering task. They show that
autoencoders can be used to enhance the quality of the
degraded images, thus improving overall task performance.
Xie et al. [23] and Liao et al. [24] use denoising as a
method component to improve on their tasks’ performance,
where the focus is gradient-based attacks [25], rather than
gradient-free perturbations. The tasks are also restricted to
classification instead of regression. Studies by Hendrycks et
al. [26] and Chen et al. [25] adopt self-supervised training
to improve model robustness. However, their focus is again
on (image) classification and not regression. To the best
of our knowledge, our work is the first gradient-free and
efficient adversarial training technique for improving model
robustness against perturbed image input in driving.

III. METHODOLOGY

The pipeline of AutoJoin in shown in Fig. 1. We use four
driving datasets Honda [11], Waymo [12], A2D2 [13], and
SullyChen [14]) in training and evaluation. During training,
each image is perturbed by selecting a perturbation from a
pre-determined set at a sampled intensity level (Sec. III-A).
The perturbed images are then passed through DAE and the
regression head for joint learning (Sec. III-B).

A. Image Perturbations and Intensity Levels

We use the same base perturbations as of Shen et al. [3] for
fair comparisons. We first perturb images’ RGB color values
and HSV saturation/brightness values in two directions,
lighter or darker according to v′c = α(ac||bc) + (1 − α)vc,
where v′c is the perturbed pixel value, α is the intensity level,
ac is the channel value’s lower bound, bc is the channel
value’s upper bound, and vc is the original pixel value. ac is
used for the darker direction and has the default value 0 and
bc is used for the lighter direction and has the default value
255. Two exceptions exist: ac is set to 10 for the V channel to
exclude a black image, and bc is set to 179 for the H channel
according to its definition. The other base perturbations
include Gaussian noise, Gaussian blur, and radial distortion,
which are used to simulate natural corruptions to an image.
The Gaussian noise and Gaussian blur are parameterized by
the standard deviation of the image. Sample images of each
base perturbation are shown in Appendix I.



Fig. 1: The pipeline of AutoJoin. The clean data comes from real-world driving datasets containing front-facing camera images and
their corresponding steering angles. The perturbed data is prepared using various base perturbations and their sampled intensity levels.
The steering angle prediction model and denoising autoencoder are jointly learnt to reinforce each other’s performance. The resulting
predictions and reconstructed images are used to compute the loss for adjusting perturbation intensity levels during learning.

In addition to the nine base perturbations, the channel
perturbations (i.e., R, G, B, H, S, V) are further discretized
into their lighter or darker components such that if p is a
channel perturbation, it is decomposed into plight and pdark.
As a result, the perturbation set contains 15 elements. During
learning, we expose the model to all 15 perturbations with the
aim to improve its generalizability and robustness. We refer
to using the Full Set of 15 perturbations as FS in Sec. IV.
AutoJoin is trained on images with single perturbations, yet
proves effective not only on such images but also on those
with multiple and unseen perturbations.

The intensity level of a perturbation is sampled within
[0, c). The minimum 0 represents no perturbation, and c is
the current maximum intensity. The range is upper-bounded
by cmax, whose value is inherited from Shen et al. [3]
to ensure comparable experiments. In practice, we scale
[0, cmax) to [0, 1). After each epoch of training, c is increased
by 0.1 providing the model loss has reduced comparing to
previous epochs. The entire training process begins on clean
images ([0, 0)). In contrast to Shen et al., our approach
allows the model to explore the entire parameter space of
a perturbation (rather than on distinct intensity levels). We
refer to using Random Intensities as RI in Sec. IV. Further
exploration of the perturbation parameter space by altering
the minimum/maximum values is discussed in Appendix II.

B. Joint Learning

The denoising autoencoder (DAE) and steering angle
prediction model are jointly learnt. The DAE learns how
to denoise the perturbed sensor input, while the prediction
model learns how to maneuver given the denoised input.
Both models train the shared encoder’s latent representations,
resulting in positive transfer between the tasks for two
reasons. First, the DAE trains the latent representations to
be the denoised versions of perturbed images, which enables
the regression head to be trained on denoised representations
rather than noisy representations, which may deteriorate the
task performance. Second, the prediction model trains the
encoder’s representations for better task performance, and

Algorithm 1 AutoJoin

input: training batch {xi}n (clean images), encoder e,
decoder d, regression model p, perturbations M, curricu-
lum bound c
for each epoch do

for each i ∈ 1,...,n do
Select perturbation op = M[i mod len(M)]
Sample intensity level l from [0, c) randomly
yi = op(xi, l) // perturb a clean image
zi = e(yi) // obtain the latent representation
x′
i = d(zi) // reconstruct an image from the latent

representation
ap = p(zi) // predict a steering angle using the

latent representation
if i % len(M) = 0 then

Shuffle M // randomize the order of perturba-
tions

end if
end for
Calculate L using Eq. 1
if L improves then

Increase c by 0.1 // increase the curriculum’s
difficulty

end if
Update e, d, and p to minimize L

end for
return e and p // for steering angle prediction

since the DAE uses these representations, the reconstructions
are improved in favoring the overall task.

Our approach is described in Algorithm 1. For a clean
image xi, a perturbation and its intensity l ∈ [0, c) are
sampled. The augmented image yi is a function of the
two and is passed through the encoder e(·) to obtain the
latent representation zi. Next, zi is passed through both the
decoder d(·) and the regression model p(·), where the results
are the reconstruction x′

i and steering angle prediction api ,



respectively. We randomize the perturbation set every 15
images to prevent overfitting.

For the DAE, the standard ℓ2 loss is used by comparing
x′
i to xi. For the regression loss, ℓ1 is used between api

and
ati , where the latter is the ground truth angle. The two losses
are combined for the joint learning:

L = λ1ℓ2 (x
′
i,xi) + λ2ℓ1 (api

,ati) . (1)

The weights λ1 and λ2 are set as follows. For the
experiments on the Waymo [12] dataset, λ1 is set to 10
and λ2 is set to 1 for better performance (emphasizing
reconstructions). For the other three datasets, λ1 is set to
1 and λ2 is set to 10 to ensure the main focus of the
joint learning is ‘maneuvering.’ Once training is finished, the
decoder is detached, leaving the prediction model for testing
through datasets in six categories (see Sec. IV-A for details).

IV. EXPERIMENTS AND RESULTS

A. Experiment Setup

We compare AutoJoin to five other approaches: Shen
et al. [3] (referred to as Shen hereafter), AugMix [5],
MaxUp [7], AdvBN [8], and AugMax [6]. We also compare
to a Standard model, one trained using only clean images,
and a Standard model trained with the Full Set of 15
perturbations and Random Intensities discussed in Sec. III-
A. We test on two backbones, the Nvidia model [15] and
ResNet-50 [16]. The breakdown of the two backbones is
detailed in Appendix I. We use four driving datasets in
our experiments: Honda [11], Waymo [12], A2D2 [13], and
SullyChen [14]. They have been widely adopted for devel-
oping machine learning models for driving-related tasks [3],
[27]–[29]. Based on these four datasets, we generate test
datasets according to Shen to ensure fair comparisons. The
test datasets contain more than 5M images in four categories:
Clean, Single, Combined, and Unseen. Combined contains
images each with several single perturbations overlaid and
Unseen contains unobserved images with perturbations ex-
tracted from the ImageNet-C dataset [17]. Sample images
for each category are given in Fig. 2. The details of these
datasets and more sample images are given in Appendix I.

We evaluate our approach using mean accuracy (MA) and
mean absolute error (MAE). MA is defined as∑

τ

accτ∈T /|T |, accτ = count(|ap − at| < τ)/n, (2)

where n denotes the number of test cases, T = {1.5, 3.0,
7.5, 15.0, 30.0, 75.0}, and ap and at are the predicted
angle and true angle, respectively. Note that we do not
use the AMAI/MMAI metrics, which are derived from MA
scores, from Shen since AMAI/MMAI only show perfor-
mance improvement while the actual MA scores are more
comprehensive. All experiments are conducted using Intel
Core i7-11700k CPU with 32G RAM and Nvidia RTX 3080
GPU. We use the Adam optimizer [30], batch size 124, and
learning rate 10−4 for training. All models are trained for
500 epochs.

TABLE I: Results on the SullyChen dataset using the Nvidia
backbone. AutoJoin outperforms all other techniques in all test
categories and improves the clean performance three times over
Shen when compared to Standard.

Clean Single Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

Standard 86.19 3.35 66.19 11.33 38.50 25.03 67.38 10.94
Standard (FSRI) 78.21 4.73 74.91 5.97 61.54 11.93 71.98 7.24
AdvBN 79.51 5.06 69.07 9.18 44.89 20.36 67.97 9.78
AugMix 86.24 3.21 79.46 5.21 49.94 17.24 74.73 7.10
AugMax 85.31 3.43 81.23 4.58 51.50 17.25 76.45 6.35
MaxUp 79.15 4.40 77.40 5.01 61.72 12.21 73.46 6.71
Shen 87.35 3.08 84.71 3.76 53.74 16.27 78.49 6.01

AutoJoin 89.46 2.86 86.90 3.53 64.67 11.21 81.86 5.12

TABLE II: Results on the A2D2 dataset using the Nvidia back-
bone. AutoJoin outperforms every other approach in all test cate-
gories while improving on Clean by a wide margin of 4.2% MA
compared to Shen, achieving 168% performance increase.

Clean Single Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

Standard 78.00 8.07 61.51 21.42 43.05 28.55 59.41 26.72
Standard (FSRI) 77.95 8.33 77.31 8.64 72.45 10.39 74.04 10.49
AdvBN 76.59 8.56 67.58 12.41 43.75 24.27 70.64 11.76
AugMix 78.04 8.16 73.94 10.02 58.22 20.66 71.54 11.44
AugMax 77.21 8.79 75.14 10.43 60.81 23.87 72.74 11.87
MaxUp 78.93 8.17 78.36 8.42 71.56 13.22 76.78 9.24
Shen 80.50 7.74 78.84 8.32 67.40 15.06 75.30 9.99

AutoJoin 84.70 6.79 83.70 7.07 79.12 8.58 80.31 8.23

B. Results

The main results, components of AutoJoin, and efficiency
analysis are discussed in Sec. IV-B.1, Sec. IV-B.2, and
Sec. IV-B.3, respectively. The results reported are the av-
erages over all test cases of a given test category.

1) Effectiveness Against Gradient-free Perturbations:
Table I shows the comparison results on the SullyChen
dataset using the Nvidia backbone. AutoJoin outperforms
every other adversarial technique across all test categories in
both performance metrics. In particular, AutoJoin improves
accuracy on Clean by 3.3% MA and 0.58 MAE compared
to the standard model trained solely on clean data. This
result is significant as the clean performance is the most
difficult to improve while AutoJoin achieves about three
times the improvement on Clean compared to Shen. Tested
on the perturbed datasets, AutoJoin achieves 64.67% MA on
Combined – a 20% accuracy increase compared to Shen,
11.21 MAE on Combined – a 31% error decrease compared
to Shen, and 5.12 MAE on Unseen – another 15% error
decrease compared to Shen.

Table II shows the comparison results on the A2D2 dataset
using the Nvidia backbone. AutoJoin again outperforms all
other techniques. To list a few notable improvements over
Shen: 6.7% MA improvement on Clean to the standard
model, which is a 4.2% performance increase; 11.72%
MA improvement – a 17% accuracy increase, and 6.48
MAE drop – a 43% error decrease on Combined; 5.01%
MA improvement – a 7% accuracy increase and 1.76 MAE
drop – a 8% error decrease on Unseen.

Switching to the ResNet-50 backbone, Table III shows
the results on the Honda dataset. Here, we only compare to
Shen and AugMix because Shen is the latest technique and



Fig. 2: Sample perturbed images. Single is perturbed by only one of the perturbations outlined in Sec. III-A Unseen contains corruptions
from ImageNet-C [17]. Single and Unseen are selected with intensities from 0.5 to 1.0 to highlight the perturbation. Combined images
have multiple perturbations overlaid, e.g., Set 2 includes G, noise, and blur as the most prominent perturbations.

TABLE III: Results of comparing AutoJoin to AugMix and Shen
on the Honda dataset using ResNet-50. AutoJoin achieves the
best overall robust performance. However, Shen’s fine-tuning stage
solely on Clean images grants them an advantage on Clean.

Clean Single Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

Standard 92.87 1.63 73.12 11.86 55.01 22.73 69.92 13.65
Standard (FSRI) 88.58 2.27 86.11 3.30 47.85 39.12 81.93 4.92
AugMix 90.57 1.97 86.82 3.53 64.01 15.32 84.34 4.31
Shen 97.07 0.93 93.08 2.52 70.53 13.20 87.91 4.94

AutoJoin 96.46 1.12 94.58 1.98 70.70 14.56 91.92 2.89

TABLE IV: Results of comparing our approaches (AutoJoin and
AutoJoin-Fuse) to AugMix and Shen on the Waymo dataset using
ResNet-50. Our approaches not only improve on Clean the most,
but also achieve the best overall robust performance.

Clean Single Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

Standard 61.83 19.53 55.99 31.78 45.66 55.81 57.74 24.22
Standard (FSRI) 61.83 20.15 61.45 20.29 56.95 24.94 60.56 21.06
AugMix 61.74 19.19 60.83 20.10 56.34 24.23 59.78 21.75
Shen 64.77 18.01 64.07 19.77 61.67 20.28 63.93 18.77

AutoJoin 64.91 18.02 63.84 19.30 58.74 26.42 64.17 19.10
AutoJoin-Fuse 65.07 17.60 64.34 18.49 63.48 20.82 65.01 18.17

AugMix was the state-of-the-art before Shen, which also has
the ability to improve both clean and robust performance
on driving datasets. As a result, AutoJoin outperforms both
Shen and AugMix on perturbed datasets in most categories.
Specifically, AutoJoin achieves the highest MAs across all
perturbed categories. AutoJoin also drops the MAE to 1.98
on Single, achieving 44% improvement over AugMix and
21% improvement over Shen; and drops the MAE to 2.89
on Unseen, achieving 33% improvement over AugMix and
41% improvement over Shen. On this particular dataset,
Shen outperforms AutoJoin on Clean by small margins due
to its additional fine-tuning step on Clean. Nevertheless,
AutoJoin still manages to improve upon the standard model
and AugMix on Clean by large margins.

During testing, we find Waymo to be unique in that the
model benefits more from learning the inner representations
of the denoised images. Therefore, we slightly modify the
procedure of Algorithm 1 after perturbing the batch as

TABLE V: Results of comparing AutoJoin with or without DAE
on the SullyChen dataset with the Nvidia backbone. Using DAE
allows AutoJoin to achieve three times the performance gain on
Clean over Shen. AutoJoin without DAE performs worse than Shen
on Clean and Single MAE. Ours without FSRI performs worse than
Shen, but better than AugMix. These changes result in our method
performing worse than Shen, showing the necessity of AutoJoin’s
pipeline design.

Clean Single Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

Standard 86.19 3.35 66.19 11.33 38.50 25.03 67.38 10.94
AugMix 86.24 3.21 79.46 5.21 49.94 17.24 74.73 7.10
Shen 87.35 3.08 84.71 3.76 53.74 16.27 78.49 6.01

Ours, w/o DAE 88.30 3.09 85.75 3.81 62.96 11.90 81.09 5.33
Ours, w/o FSRI 86.43 3.54 83.19 4.62 61.97 13.01 78.51 6.23
Ours (AutoJoin) 89.46 2.86 86.90 3.53 64.67 11.21 81.86 5.12

follows: 1) one-tenth of the perturbed batch is sampled; 2)
for each single perturbed image sampled, two other perturbed
images are sampled; and 3) the three images are averaged
to form a ‘fused’ image. This is different from AugMix as
AugMix applies multiple perturbations to a single image. We
term this alternative procedure AutoJoin-Fuse.

Table IV shows the results on the Waymo dataset us-
ing ResNet-50. AutoJoin-Fuse makes a prominent impact
by outperforming Shen on every test category except for
combined MAE. We also improve the clean performance
over the standard model by 3.24% MA and 1.93 MAE.
AutoJoin also outperforms AugMix by margins up to 7.14%
MA and 3.41 MAE. These results are significant as for all
four datasets, the well-performing robust techniques operate
within 1% MA or 1 MAE. While not the focus of this
project, we additionally explore AutoJoin’s effectiveness
against gradient-based adversarial examples. The results and
discussion are provided in Appendix VII

2) Effectiveness of AutoJoin Pipeline: DAE and Feed-
back Loop. A major component of AutoJoin is DAE. The
results of our approach with or without DAE are shown in
Table V. AutoJoin without DAE outperforms Shen in several
test categories but not on Clean and Single MAE, meaning
the perturbations and sampled intensity levels are effective



TABLE VI: Results on the SullyChen dataset with the Nvidia
backbone using six subsets of the base perturbations. ‘w/o BND’
means no presence of blur, noise, and distort. Single is removed for
a fair comparison. Using all base perturbations results in the best
overall performance.

Clean Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE

w/o RGB 87.71 3.00 58.88 14.71 81.23 5.13
w/o HSV 88.33 2.91 50.22 18.05 78.91 6.04
w/o BND 88.24 3.05 59.49 12.80 80.45 5.55
RGB 88.24 3.13 44.41 23.05 78.31 6.48
HSV 88.66 3.04 54.78 15.35 80.60 5.60
RGB + Gaussian noise 88.39 3.15 65.05 11.25 80.17 5.75
HSV + Gaussian noise 86.70 3.52 63.34 11.82 79.49 5.87
w/o Blur & Distort 87.29 3.56 65.78 10.88 80.43 5.57

All 89.46 2.86 64.67 11.21 81.86 5.12

for performance gains. In addition, a byproduct of DAE
is denoised images. A natural idea is to use these images
as additional training data for the prediction model, thus
forming a feedback loop within AutoJoin. We explore the
feedback loop in greater detail in Appendix III. Overall, we
find a decrease in performance due to the feedback loop, thus
we exclude it from the AutoJoin’s pipeline.

Perturbations and Intensities. To better understand the
base perturbations, we conduct experiments with six differ-
ent perturbation subsets: 1) No RGB perturbations, 2) No
HSV perturbations, 3) No blur, Gaussian noise, or distort
perturbations (denoted as BND), 4) only RGB perturbations
and Gaussian noise, 5) only HSV perturbations and Gaussian
noise, and 6) no blur or distort perturbations. These subsets
are formed to examine the effects of the color spaces and/or
blur, distort, or Gaussian noise. We exclude Single from the
results, shown in Table VI as different subsets will cause
Single becoming a mixture of unseen and seen perturbations.
Not using blur or distort outperforms using all perturbations
within Combined by 1.11 MA and 0.33 MAE, but not within
Clean and Unseen. We observe that using RGB perturbations
tends to result in better Clean performance. Not using
the HSV perturbations results in the worse generalization
performance out of the models with 50.22% MA and 78.91%
MA in Combined and Unseen, respectively. Overall, we find
that using all 15 perturbations is necessary for maximal
performance. More results and findings for the other driving
datasets is given in Appendix V.

We also assess AutoJoin’s performance without using
the Full Set of 15 perturbations and Random Intensities
(FSRI), which are described as AutoJoin without FSRI in
Table V. In this case, perturbations are randomly sampled
during the learning process, and Shen’s distinct intensity
values are adopted. The results show a significant decrease in
performance when FSRI are excluded. Thus, both FS and RI
are necessary for optimal performance and to surpass Shen.
More results and details on the FS and RI components for
different datasets are provided in Appendix IV.

3) Efficiency: We use AugMix/Shen + the Honda/Waymo
datasets + ResNet-50 as the baselines for testing the effi-
ciency. On the Honda dataset, AutoJoin takes 109 seconds
per epoch on average, while AugMix takes 118 seconds and
Shen takes 759 seconds. Our approach saves 8% and 86%

per epoch time compared to AugMix and Shen, respectively.
On the Waymo dataset, AugMix takes 128 seconds and Shen
takes 818 seconds, while AutoJoin takes only 118 seconds
– 8% and 86% time reduction compared to AugMix and
Shen, respectively. Note that the time listed for Shen excludes
perturbation selection process during training, which adds
to overall training time. More time comparisons such as
AugMix/Shen on the Sully/A2D2 datasets with the Nvidia
backbone can be found in Appendix VI. Lastly, our approach
requires 90% less training data needed by Shen: we perturb
the original clean dataset during the training process, unlike
Shen’s method of creating nine perturbed datasets (one for
each base perturbation) beforehand and combining them with
the clean dataset.

V. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We propose AutoJoin, a gradient-free adversarial training
technique that is simple yet effective and efficient for robust
maneuvering. We show that AutoJoin outperforms state-of-
the-art adversarial techniques on various real-word driving
datasets through extensive experimentation. AutoJoin is the
most efficient technique tested on by being faster per epoch
compared to AugMix and saving 83% per epoch time and
90% training data over Shen

AutoJoin is constrained to the regression task of au-
tonomous driving rather than being a general-purpose data
augmentation technique. Our focus is on autonomous driving
given the significance in making autonomous driving systems
robust to perturbations considering the real-world impacts
(such as accidents or fatalities) that could occur if such
driving systems fail. Another limitation is that while we use
real-world images for training/testing, we have not deployed
AutoJoin in a real-world test driving scenario. This limits
our understanding of how AutoJoin would work within day-
to-day driving scenarios. Such testing would be absolutely
necessary in order to ensure the efficacy of AutoJoin in
autonomous driving systems and the safety of all parties
during the testing scenario.

In the future, we are interested in expanding AutoJoin
to explore wider perturbation space and more intensity
levels to remove any use of FID as well as using other
perturbation sets. Furthermore, we would like to explore
means to improve clean and combined performance on the
Honda/Waymo datasets with ResNet-50. Although our work
lacks theoretical support, this remains an open problem
since the state-of-the-art techniques we compared with also
lack theoretical evidence. Seeking theoretical support for
our findings would be an interesting research direction. The
Appendix of this work can be found in the GitHub repository:
https://github.com/Fluidic-City-Lab/AutoJoin.
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APPENDIX I
DATASETS AND EXPERIMENT SETUP

Base Perturbations. The description of the base pertur-
bations is given in Sec. III-A. As an example, in Fig. 3 we
show the clean image and the perturbed images from all base
perturbations. The perturbation intensity is 0.5, half of the
maximum intensity.

Driving datasets and perturbed datasets. We use
four driving datasets in our experiments: Honda [11],
Waymo [12], A2D2 [13], and SullyChen [14]. Theses
datasets have been widely adopted for developing machine
learning models for driving-related tasks [3], [27]–[29].
Based on these four datasets, we generate test datasets that
contain more than 5M images in six categories. Four of
them are gradient-free, named Clean, Single, Combined,
Unseen, and are produced according to Shen to ensure
fair comparisons. We also present details for two gradient-
based datasets, FGSM and PGD, which are used to test our
approach’s adversarial transferability in Appendix VII.

• Clean: the original driving datasets Honda, Waymo,
A2D2, and SullyChen.

• Single: images with a single perturbation applied at five
intensity levels from Shen over the 15 perturbations
introduced in Sec. III-A. This results in 75 test cases
in total.

• Combined: images with multiple perturbations at the in-
tensity levels drawn from Shen. There are six combined
test cases in total.

• Unseen: images perturbed with simulated effects, in-
cluding fog, snow, rain, frost, motion blur, zoom blur,
and compression, from ImageNet-C [17]. Each effect is
perturbed at five intensity levels for a total of 35 unseen
test cases.

• FGSM: adversarial images generated using FGSM [1]
with either the Nvidia model or ResNet-50 trained only
on clean data. FGSM generates adversarial examples in
a single step by maximizing the gradient of the loss
function with respect to the images. We generate test
cases within the bound L1 norm at five step sizes ✏ =
0.01, 0.025, 0.05, 0.075 and 0.1.

• PGD: adversarial images generated using PGD [2] with
either the Nvidia model or ResNet-50 trained only on
clean data. PGD extends FGSM by taking iterative
steps to produce an adversarial example at the cost of
more computation. Again, we generate test cases at five
intensity levels with the same max bounds as of FGSM.

Sample images for each test category are given in Fig. 4.
For Single and Unseen, perturbed images were selected with
intensities from 0.5 to 1.0 to highlight the perturbation.

Network architectures. We test on two backbones, the
Nvidia model [15] and ResNet-50 [16]. We empirically split
the Nvidia model where the encoder is the first seven layers
and the regression head is the last two layers; for ResNet-
50, the encoder is the first 49 layers and the regression head
is the last fully-connected layer. The decoder is a five-layer
network with ReLU activations between each layer and a

Sigmoid activation for the final layer.

APPENDIX II
MAXIMUM AND MINIMUM INTENSITY

We examine the effects of using different ranges of inten-
sities for the perturbations. The original range of intensities
for AutoJoin is [cmin = 0, cmax = 1). We perform two sets
of experiments: 1) we change cmax to be one of {0.9, 1.1,
1.2, 1.3, 1.4, 1.5} while leaving cmin = 0; and 2) we change
cmin to be one of {0.1, 0.2, 0.3, 0.4, 0.5} while leaving
cmax = 1. For the first experiment set, we change cmax to be
primarily greater than one to see if learning on more intense
perturbations allows for better performance. We also change
cmax to 0.9 to see if the model does not have to learn on the
full range defined by [3] and still achieves good performance.
For the second experiment set, we increase the minimum
to see if it is sufficient to learn on images with either no
perturbation or a low intensity perturbation to achieve good
performance.

Table VII shows the full set of results for SullyChen using
the Nvidia architecture. When changing cmax, the value of
1.1 achieves the most similar performance compared to the
original range of AutoJoin; however, it still performs worse
than the original range overall. When looking at changing
cmin, the value of 0.1 results in the closest performance
to the original range; however, it also fails to outperform
the original range. Looking at both sets of results, changing
either cmin or cmax tends to result in the same magnitude of
worse performance for the Clean and Single test categories.
However, they differ in that changing cmin results in worse
performance overall in Unseen for both MA and MAE. These
results show a potential vulnerability of the original range
as they all outperform the original range in Combined with
cmax being equal to 1.2 showing the best performance in
that category. The results for changing the maximum value
show that it is not necessarily the case that learning on more
intense perturbations will lead to overall better performance.
This could be because the perturbations become intense
enough that information necessary for steering angle pre-
diction is lost. The results for changing the minimum value
show that it is important for the model to learn on images
with no perturbation or a low intensity perturbation given that
a minimum of 0.1 achieves the best performance within the
set. Overall, however, the original range of AutoJoin achieves
the best prediction performance.

The results for A2D2, shown in Table VIII, are more
inconsistent than SullyChen given that the original range
is outperformed in four columns instead of just two. The
original range is outperformed by changing cmax to 1.3
for the Clean MA and Unseen MA columns and changing
cmax to 1.4 for Combined. Table VIII does show, similar
to Table VII, that learning on more intense perturbations
will necessarily lead to better performance when the test
intensities are left unchanged. These results also show it
is important to learn on images without a perturbation/low
intensity perturbation given that the original range outper-
forms all of the experiments when changing the minimum


Fig. 3: Sample images used during training within the SullyChen [14] dataset. The clean image and its perturbed variants using all base
perturbations are shown. The intensity level of the images is 0.5, half of the max intensity.

Fig. 4: Sample images with perturbations for the six test categories. A column represents a single image that is either clean or perturbed
by one of the five perturbation categories. Single images are perturbed by only one of the perturbations outlined in Sec. III-A Unseen
images contain corruptions from ImageNet-C [17]. Combined images have multiple perturbations overlaid, for example, the second column
image has G, noise, and blur as the most prominent perturbations. FGSM and PGD adversarial examples are also shown at increasing
intensities. The visual differences are not salient due to the preservation of gradient-based adversarial attack potency.


TABLE VII: Comparison results on the SullyChen dataset with the Nvidia model using a different range of intensities. The
first results set show using a different maximum intensity value, leaving the minimum value at zero. The second results set
show using a different minimum value, leaving the maximum value as one. For both sets, the original range of AutoJoin
achieves the best overall performance.

Clean Single Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

Max 0.9 88.66 3.09 84.64 4.46 67.77 10.11 81.01 5.35
Max 1.1 88.90 3.03 85.50 4.14 67.20 10.44 81.82 5.24
Max 1.2 87.77 3.29 84.47 4.32 67.88 9.88 80.83 5.43
Max 1.3 87.92 3.30 84.70 4.33 67.87 9.94 81.22 5.33
Max 1.4 88.07 3.24 84.95 4.29 67.44 10.15 81.16 5.37
Max 1.5 87.74 3.24 84.56 4.29 65.57 10.85 80.98 5.39

Min 0.1 88.60 3.10 85.33 4.14 67.78 10.01 80.97 5.50
Min 0.2 87.14 3.46 83.95 4.54 66.57 10.49 80.05 5.74
Min 0.3 87.14 3.31 84.27 4.32 66.35 10.60 80.49 5.44
Min 0.4 87.41 3.23 84.18 4.34 66.18 10.65 80.50 5.50
Min 0.5 87.56 3.33 84.20 4.41 65.58 10.87 80.14 5.62

AutoJoin 89.46 2.86 86.90 3.53 64.67 11.21 81.86 5.12

TABLE VIII: Comparison results on the A2D2 dataset with the Nvidia model using a different range of intensities. The
first results set show using a different maximum intensity value, leaving the minimum value at zero. The second results set
show using a different minimum value, leaving the maximum value as one. For both sets, the original range of AutoJoin
achieves the best overall performance.

Clean Single Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

Max 0.9 83.82 7.16 82.13 7.65 74.06 9.79 79.04 8.79
Max 1.1 83.95 7.17 82.78 7.54 78.51 8.87 79.59 8.63
Max 1.2 84.50 7.12 83.34 7.45 79.28 8.50 80.28 8.62
Max 1.3 84.90 7.01 83.60 7.38 79.37 8.65 80.63 8.38
Max 1.4 84.53 7.06 83.48 7.36 79.63 8.41 80.59 8.26
Max 1.5 84.65 6.86 83.39 7.26 79.50 8.57 80.37 8.30

Min 0.1 83.74 7.04 82.22 7.61 73.89 10.84 79.32 8.71
Min 0.2 84.29 7.17 83.19 7.50 77.70 9.28 79.91 8.69
Min 0.3 84.16 7.35 83.12 7.61 77.16 9.16 79.77 8.82
Min 0.4 83.80 7.33 82.82 7.60 77.00 9.20 79.17 8.98
Min 0.5 84.06 7.41 82.93 7.72 75.89 10.17 79.33 9.09

AutoJoin 84.70 6.79 83.70 7.07 79.12 8.58 80.31 8.23

value. When examining both Table VII and Table VIII, the
only times the new ranges outperform the original range
of AutoJoin is when cmax is increased. However, for both
SullyChen and A2D2, the original range achieves the best
overall performance.

APPENDIX III
FEEDBACK LOOP

This section contains results and discussion for the Sul-
lyChen, A2D2, Honda, and Waymo datasets. Adding the
denoised images results in adding a third term to Eq. 1:

L = �1`2 (x
0
i,xi) + �2`1 (api ,ati) + �3`1(ap0

i
,ati), (3)

where �3 is the weight of the new term and ap0
i

is the
predicted steering angle on the reconstruction x0

i.
Looking at Table IX, emphasizing the reconstruction re-

gression loss causes significant performance loss compared
to AutoJoin with 8.12% MA/2.22 MAE and 8.13% MA/2.51
MAE decreases on Clean and Single, respectively. This

suggests the data contained within the reconstructions is
detrimental to the overall performance/robust capabilities of
the regression model. Emphasizing reconstruction loss results
in worse performance than AutoJoin, which is expected
as AutoJoin emphasizes regression loss for the SullyChen
dataset. Emphasizing the regression loss results in improve-
ments in Combined (3.56% MA and 1.51 MAE) at the cost
of detriment to performance in all other categories. Overall,
there is a decrease in performance when adding the feedback
loop.

In Table X, a similar trend to Table IX is seen where
the weight tuple (1,10,1) is the best performing of the three
weight tuples, while the tuple (1,1,10) offers the worst per-
formance. This reiterates that emphasizing the reconstruction
regressions had detrimental effects, which is potentially due
to information loss within the reconstructions. However,
A2D2 is less affected by adding an additional loss term
compared to SullyChen. This is seen as the differences in
ranges of performance between the weight coefficients are



TABLE IX: Results on the SullyChen dataset with the Nvidia backbone and including the feedback loop. The weight coefficients are
presented in the order of terms of Eq. 3. Given the overall decreased performance, we exclude the feedback loop from AutoJoin.

Clean Single Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

(10,1,1) 86.93 3.56 83.60 4.66 64.10 11.10 78.88 6.25
(1,10,1) 89.11 3.07 85.60 4.15 68.23 9.70 81.58 5.27
(1,1,10) 81.34 5.08 78.77 6.04 64.36 11.21 76.31 6.71

AutoJoin (1,10) 89.46 2.86 86.90 3.53 64.67 11.21 81.86 5.12

TABLE X: Comparison results on the A2D2 dataset with the Nvidia model using different subsets of the original set of
perturbations. The weight coefficients are presented in the order: reconstruction loss, regression loss, reconstruction regression
loss. AutoJoin’s original set of weights outperforms all three weight coefficient tuples.

Clean Single Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

(10,1,1) 83.98 7.07 82.81 7.44 78.63 8.75 79.26 8.95
(1,10,1) 84.18 7.05 83.09 7.38 77.80 8.81 79.72 8.57
(1,1,10) 83.01 7.42 81.89 7.78 77.21 8.97 79.67 8.39

AutoJoin (1,10) 84.70 6.79 83.70 7.07 79.12 8.58 80.31 8.23

much greater for SullyChen than for A2D2. For example,
the range of performance on Clean for SullyChen is 7.77%
MA/2.01 MAE while for A2D2, it is just 1.17% MA/0.37
MAE. Overall, the original weights of AutoJoin provide for
the best performance.

Table XI) shows the results for Honda with ResNet-
50. The results show that adding the feedback loop for
Honda results in significant performance loss, even when
emphasizing regression loss. For example, the greatest dif-
ferences between the three experiment weight tuples and
AutoJoin’s original weight tuple are 8.12% MA and 2.22
MAE for SullyChen and 1.91% MA and 0.71 MAE for
A2D2. However, the least differences between the three
weight tuples and AutoJoin’s original weight tuple for Honda
is 9.29% MA and 2.41 MAE. Emphasizing the reconstruction
regression loss results in significant performance losses of
45.16% MA and 13.86 MAE in Clean, which is a 47%
decrease for MA and a 93% decrease for MAE; Single,
Combined, and Unseen also have significant performance
losses. Emphasizing regression loss also results in signifi-
cant performance loss such as 11.35% MA and 2.69 MAE
decreases in Single; these equates to a 14% MA decrease and
57% MAE decrease. These significant performance losses
are part of our reasoning to exclude the feedback loop as a
main component of AutoJoin. AutoJoin performs better on
Honda without the feedback loop.

Table XII shows the results for adding the feedback
loop to Waymo on ResNet-50. Waymo uses a weight tuple
of (10,1) in AutoJoin for better performance, while the
other datasets use (1,10). This suggests that learning on the
underlying distribution of the data and the reconstructions
provide significant benefit over emphasizing regression loss.
However, when adding the feedback loop, emphasizing the
regression loss results in better performance than emphasiz-
ing the reconstruction loss; however, both are outperformed

by AutoJoin. The performance trend for Waymo is signifi-
cantly different from the other datasets as emphasizing the
reconstruction regression loss results in SOTA performance.
AutoJoin-Fuse’s results are shown for further comparison
since it is the SOTA within the main text. This is an
intriguing development because of the negative performance
impacts that the feedback loop has on the other datasets. This
result is further evidence towards the idea the learning un-
derlying distributions of Waymo leads to better performance.
Overall, emphasizing the reconstruction regression results in
SOTA performance.

APPENDIX IV
FULL SET OF PERTURBATIONS NOT GUARANTEED AND

NO RANDOM INTENSITIES

From Table V, AutoJoin without the denoising autoen-
coder (DAE) already outperforms the work by [3]. Outside
of adding the DAE, the main changes from their work to
our work is that we ensure that all 15 perturbations are seen
during learning and that the intensities are sampled from a
range instead of using distinct intensities. Thus, we want
to examine if these changes have an effect on performance
and can account for the reason that AutoJoin without the
DAE outperforms the Shen model. We break down this set
of experiments into three sets of cases: 1) not guaranteeing
the full set of 15 perturbations are seen by the model,
2) not using random intensities, or 3) both. The original
methodology of AutoJoin is left the same except for the
changes of each case. The third case brings the methodology
of AutoJoin closest to that of the work by [3] although they
are not the same entirely.

The first case is accomplished by not discretizing the
single channel perturbations as described in Sec. III-A.
Whether to lighten or darken the R, G, B, H, S, and V
channels of the images is decided stochastically. This means
there is potential the model does not see all 15 perturbations,



TABLE XI: Comparison results on the Honda dataset with the ResNet-50 model using different subsets of the original
set of perturbations. The weight coefficients are presented in the order: reconstruction loss, regression loss, reconstruction
regression loss. Adding the feedback loop for the Honda dataset, results in significant performance loss for all three weight
tuples. Because of this, the original weights of AutoJoin achieve the best performance.

Clean Single Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

(10,1,1) 79.58 6.53 77.19 8.13 65.19 18.21 77.15 8.84
(1,10,1) 85.70 3.53 83.23 4.67 61.41 20.68 81.13 5.72
(1,1,10) 51.30 14.98 49.19 16.79 42.71 22.15 49.15 17.15

AutoJoin (1,10) 96.46 1.12 94.58 1.98 70.70 14.56 91.92 2.89

TABLE XII: Comparison results on the Waymo dataset with the ResNet-50 model using different subsets of the original
set of perturbations. The weight coefficients are presented in the order: reconstruction loss, regression loss, reconstruction
regression loss. Emphasizing the reconstruction regression loss term results in SOTA performance.

Clean Single Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

(10,1,1) 63.14 19.15 63.38 19.11 57.98 23.15 61.61 20.41
(1,10,1) 63.35 18.89 63.22 19.37 56.32 35.88 62.32 21.31
(1,1,10) 67.70 18.00 66.68 18.28 67.70 18.00 67.70 18.00

AutoJoin (10,1) 64.91 18.02 63.84 19.30 58.74 26.42 64.17 19.10
Fuse (10,1) 65.07 17.60 64.34 18.49 63.48 20.82 65.01 18.17

although highly unlikely; however, it is highly likely that
the model does not see them with the same frequency as
with the original methodology of AutoJoin. The second case
is done by using the five distinct intensities from the work
by [3], which are {0.02, 0.2, 0.5, 0.65, 1.0}. The intensity
for a perturbation is still sampled from within this set of
values, but it is inherently not as wide of a distribution space
compared to the methodology described in Sec. III-A. The
third case combines the changes in procedure outlined above.

Looking at the effects the three cases have on SullyChen
and A2D2 using the Nvidia model, the results show that
ensuring all 15 perturbations are seen during learning and
sampling the intensities does improve overall performance
when predicting steering angles and these changes are signifi-
cant to the training of the model. This gives more credence to
why AutoJoin without the DAE is able to outperform Shen.

The effects of the three cases differs between the two
datasets. Table XIII shows that using both is able to sig-
nificantly impact performance on all categories by decreas-
ing performance by an average of 3.20% MA and 1.17
MAE across all test categories for SullyChen. Using distinct
intensities allows for significantly better performance on
Combined (the model without FS also achieves better per-
formance in this category), but fails to outperform in Clean,
Single, and Unseen categories. For A2D2, the overall effect is
much less severe as the differences between the three effects
and AutoJoin’s methodology are in closer proximity with
roughly a difference of 1.0% MA and 0.5 MAE. However,
the original setup still results in the overall best steering angle
prediction performance.

Table XV shows the results for Honda with ResNet-
50. Unlike SullyChen and A2D2, all three cases actually

outperform AutoJoin for both Clean and Single. AutoJoin is
even outperformed in Combined when not ensuring the full
set. Not ensuring the full set has potential for more variability
of when perturbations are learned by the model, which
can increase the perturbation distribution space allowing for
better generalization. However, when not ensuring the full set
and using distinct intensities, there is a loss of generalization
as AutoJoin outperforms this case in Combined and Unseen.
The Shen model outperforms AutoJoin in Clean and Com-
bined MAE. Shen still outperforms the case of not ensuring
the full set on Clean, but the Shen model is outperformed
on Combined MAE. AutoJoin achieves the best performance
in Unseen amongst all the three cases; however, overall the
model without the full set provides for the best performance.

The idea that ensuring all 15 perturbations are seen
during learning and sampling the perturbation intensities
does improve the overall performance of the model returns
with Waymo on ResNet-50. Table XVI shows these results.
AutoJoin outperforms all three cases in Clean, Single MA,
and Unseen. It is outperformed by the all three cases in
Single MAE and is outperformed by the model without FS
in Combined; however, it outperforms the other two cases in
Combined. Looking at the results for Honda and Waymo, it
appears that not ensuring all 15 perturbations are seen during
training provides for the best performance for Combined;
however still fails to outperform AutoJoin in Unseen. These
two categories are different from Clean and Single as the
model never learns on them during training. The model
without FS is able to generalize better for Combined than
Unseen given the results.



TABLE XIII: Comparison results on the SullyChen dataset with the Nvidia model looking at the cases where it is not
guaranteed the Full Set of perturbations is seen by the model, not using Random Intensities, or both. The distinct intensities
come from Shen. Using the original AutoJoin setup results in the best overall performance across all subsets of perturbations.

Clean Single Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

w/o FS 87.74 3.32 84.54 4.34 66.27 10.32 80.62 5.50
w/o RI 88.07 3.42 84.76 4.42 67.72 10.12 80.92 5.65
w/o FS+RI 86.43 3.54 83.19 4.62 61.97 13.01 78.51 6.23

AutoJoin 89.46 2.86 86.90 3.53 64.67 11.21 81.86 5.12

TABLE XIV: Comparison results on the A2D2 dataset with the Nvidia model looking at the cases where it is not guaranteed
the Full Set of perturbations is seen by the model, not using Random Intensities, or both. Using the original AutoJoin setup
results in the best overall performance across all subsets of perturbations.

Clean Single Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

w/o FS 83.93 7.24 82.77 7.52 78.60 8.90 78.45 9.78
w/o RI 83.90 6.95 82.68 7.35 78.20 8.72 78.38 9.20
w/o FS+RI 83.90 7.10 82.85 7.42 78.45 8.63 79.01 9.05

AutoJoin 84.70 6.79 83.70 7.07 79.12 8.58 80.31 8.23

TABLE XV: Comparison results on the Honda dataset with the ResNet-50 model looking at the cases where it is not
guaranteed the Full Set of perturbations is seen by the model, not using Random Intensities, or both. The model without
FS results in the best overall performance of the model, which is different from the SullyChen, A2D2, and Waymo datasets.

Clean Single Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

w/o FS 96.78 1.05 95.17 1.82 75.16 12.34 91.69 3.27
w/o RI 96.53 1.08 94.92 1.86 68.63 17.14 91.53 3.18
w/o FS+RI 96.72 1.06 95.20 1.80 65.49 24.44 90.97 3.91

AutoJoin 96.46 1.12 94.58 1.98 70.70 14.56 91.92 2.89

TABLE XVI: Comparison results on the Waymo dataset with the ResNet-50 model looking at the cases where it is not
guaranteed the Full Set of perturbations is seen by the model, not using Random Intensities, or both. Using all of them
results in the best overall performance across all subsets of perturbations.

Clean Single Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

W/o FS 63.95 18.40 63.40 18.85 61.04 21.46 63.40 19.15
W/o RI 64.12 18.57 63.76 19.14 54.80 32.87 62.27 21.52
W/o FS+RI 63.96 18.51 63.70 18.76 56.25 26.81 62.79 19.81

AutoJoin 64.91 18.02 63.84 19.30 58.74 26.42 64.17 19.10

APPENDIX V
PERTURBATION STUDY

This section contains more results and discussion for
the other datasets of A2D2, Honda, and Waymo for the
experiments where different subsets of perturbations are
used.

The trends for A2D2 using the Nvidia model are different
compared to SullyChen. The results are given in Table XVII.
While A2D2 is similar to SullyChen in that the best perfor-
mance comes from using all of the perturbations, the model
with no BND perturbations performs the worst on Combined
implying that some combination of these perturbations is

important for model generalizability for Combined. This
idea is aided by the other scenarios where performance
on Combined is improved when Gaussian noise is added
back to the set of perturbations seen by the model. The
closest in overall performance to using all perturbations is not
using RGB perturbations within the training set. For Unseen,
there are no clear patterns within the performances amongst
the various subsets with the worst performing subset being
not using blur and distort perturbations at 77.40% MA and
9.57 MAE. The other trend that is similar to SullyChen,
however, is that Combined contains the most volatility in the
performance; the range from the worst performing subset to



TABLE XVII: Comparison results on the A2D2 dataset with the Nvidia model using different subsets of the original set of
perturbations. “No BND” means that blur, noise, and distort are not used within the perturbation set. The single perturbation
column is removed for a fair comparison. Using all of them results in the best overall performance across all subsets of
perturbations.

Clean Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE

No RGB 84.46 6.61 77.08 9.51 79.67 8.65
No HSV 84.50 6.70 76.51 9.41 78.01 9.36
No BND 83.72 7.21 68.88 12.09 78.49 9.13
RGB 83.82 7.20 67.49 12.40 76.93 9.87
HSV 83.19 7.26 67.91 12.65 78.00 9.31
Only RGB+Noise 83.92 6.91 73.56 10.03 78.44 8.96
Only HSV+Noise 84.39 6.87 70.96 11.47 79.53 8.61
No Blur,Distort 82.53 7.49 74.99 9.53 77.40 9.57

All 84.70 6.79 79.12 8.58 80.31 8.23

the best performing subset is 68.88% MA and 12.09 MAE to
79.12% MA and 8.58 MAE. Using all perturbations during
learning results in the best performance.

Table XVIII shows the results for Honda on ResNet-
50. Using all perturbations is outperformed several cases in
Clean and Combined. Not using RGB perturbations achieves
the best performance in Clean and not using HSV pertur-
bations achieves the best performance in Combined (by a
significant margin of 4.26% MA/1.37 MAE). Even with the
clean performance increases, the Shen model is still the
best in Clean. Well-defined patterns are still not clear in
the results. Not using RGB perturbations performs worse
than using all perturbations in Combined. Not using HSV
perturbations significantly improves performance in Com-
bined at a 4.26% MA and 1.37 MAE improvement; however,
results in a significant decrease in performance in Unseen
with 3.67% MA and 2.78 MAE detriments. The range of
performance for Combined is the largest compared to the
other categories. This is similar to SullyChen and A2D2,
showing further evidence of the volatility within Combined.
The closest in performance to using all perturbations is not
using HSV perturbations; this case results in a net gain of
0.61% MA and a net loss of 1.36 MAE when compared
to using all. Given that MAE, for Honda, are small values
and lie within a tighter range than MA, the net loss of 1.36
MAE means that using all perturbations is actually the best
performing model overall.

Table XIX shows the results for Waymo with ResNet-
50. Using all perturbations results in the best overall perfor-
mance for the model, although not using HSV perturbations
outperforms using all in Combined for both MA and MAE.
Combined has the widest range in performances amongst
the subsets confirming that Combined, in general, is the
most volatile in performance across all the datasets used. Not
using RGB perturbations, not using HSV perturbations, and
only using HSV perturbations and Gaussian noise outperform
using all perturbations in Combined; however, this does not
translate over to Clean and Unseen. Only using RGB and
Gaussian noise perturbations results in the overall worst
performance across the three categories, but any further

patterns can not be well-defined from this as using RGB
perturbations and/or Gaussian noise in other cases results in
relatively good performance. Overall, using all perturbations
results in the best performing prediction model.

APPENDIX VI
TIMES FOR EXPERIMENTS

We present Tables XX and XXI with times for various
experiments. Table XX shows time (in seconds) per epoch
for Standard, AugMix, Shen, and AutoJoin The experiments
are on AutoJoin, Shen, AugMix, and Standard with both the
ResNet-50 and Nvidia models. Standard is given to show
baseline efficiency when not performing any robustness train-
ing. From the table, AutoJoin is the most efficient compared
to the other techniques. AugMix is close in efficiency as it
is within at most 10 seconds of our technique’s time. Shen’s
efficiency is significantly worse compared to both AutoJoin
and AugMix as it is many times slower than both techniques.
Note that for both tables, Shen’s time does not reflect a
selection process that occurs in-between training that results
in additional training time.

Table XXI shows the times for Standard, AugMix, Shen,
and AutoJoin using the Nvidia model. Standard is given
to provide a baseline efficiency when not performing any
robustness training. AutoJoin still achieves the best efficiency
out of the techniques; however, Shen is more efficient than
AugMix, which is not the case in Table XX. This suggests
that with smaller datasets, Shen’s technique is able to main-
tain efficiency and as the datasets starts growing, Shen’s
efficiency significantly decreases.

APPENDIX VII
GRADIENT-BASED ADVERSARIAL TRANSFERABILITY

Although AutoJoin is a gradient-free technique with the
focus on gradient-free attacks, we curiously test it on
gradient-based adversarial examples. Dataset details and
sample images are given in Appendix I The evaluation
results using the A2D2 dataset and the Nvidia backbone
are shown in Table XXII. AutoJoin surprisingly demon-
strates superb ability in defending adversarial transferability
against gradient-based attacks by outperforming every other



TABLE XVIII: Comparison results on the Honda dataset with the ResNet-50 model using different subsets of the original
set of perturbations. “No BND” means that blur, noise, and distort are not used within the perturbation set. The single
perturbation column is removed for a fair comparison. Using all perturbations is overall the best performing model despite
being outperformed in the Clean and Combined categories.

Clean Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE

No RGB 96.78 1.02 66.37 21.67 91.72 3.26
No HSV 96.48 1.07 74.96 13.19 88.25 5.67
No BND 96.08 1.27 63.88 18.97 90.58 3.55
RGB 95.75 1.38 44.90 32.36 83.53 7.32
HSV 95.94 1.31 53.99 29.83 83.53 7.59
Only RGB+Noise 96.39 1.13 69.21 14.48 87.13 5.70
Only HSV+Noise 96.47 1.12 69.08 14.72 91.77 2.93
No Blur,Distort 96.33 1.17 67.74 14.73 91.16 3.15

All 96.46 1.12 70.70 14.56 91.92 2.89

TABLE XIX: Comparison results on the Waymo dataset with the ResNet-50 model using different subsets of the original
set of perturbations. “No BND” means that blur, noise, and distort are not used within the perturbation set. The single
perturbation column is removed for a fair comparison. Using all of them results in the best overall performance across all
subsets of perturbations.

Clean Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE

No RGB 64.63 18.20 60.38 24.79 63.63 19.72
No HSV 63.94 18.46 61.18 20.89 63.09 20.02
No BND 64.56 18.06 50.21 43.28 63.06 20.13
RGB 64.64 18.12 49.32 36.31 62.27 20.25
HSV 65.00 18.37 52.03 34.21 63.85 19.52
Only RGB+Noise 63.95 18.40 52.84 31.01 60.70 23.43
Only HSV+Noise 64.48 17.97 59.97 24.39 63.65 19.37
No Blur,Distort 64.04 18.06 57.29 28.48 62.89 19.91

All 64.91 18.02 58.74 26.42 64.17 19.10

TABLE XX: Table comparing the efficiency of different
techniques in terms of time (in seconds) per each epoch on
the ResNet-50 model. AutoJoin is the most efficient out of
all the techniques.

Honda Waymo

Standard 90 97

AugMix 118 128
Shen 759 818
AutoJoin 109 118

approaches by large margins at all intensity levels of FGSM
and PGD.

TABLE XXI: Table comparing the efficiency of different
techniques in terms of time (in seconds) per each epoch on
the Nvidia model. AutoJoin is the most efficient out of all
the techniques.

SullyChen A2D2

Standard 2 4

AugMix 10 22
Shen 9 16
AutoJoin 5 9



TABLE XXII: Results on gradient-based adversarial examples using the A2D2 dataset and the Nvidia backbone. Each column represents
a dataset generated at a certain intensity of FGSM/PGD (higher values mean higher intensities). All results are in MA (%). AutoJoin
achieves the least adversarial transferability among all techniques tested under all intensities of FGSM [1] and PGD [2].

FGSM

0.01 0.025 0.05 0.075 0.1

Standard 73.91 65.42 57.70 53.27 50.12
AdvBN 76.34 76.14 75.50 74.25 72.75
AugMix 77.66 76.69 73.61 69.74 66.38
AugMax 77.04 76.94 76.18 75.10 73.91
MaxUp 78.71 78.47 78.10 77.42 76.71
Shen 80.10 79.83 79.02 77.94 76.98

AutoJoin 84.11 83.83 83.13 82.02 81.14

PGD

0.01 0.025 0.05 0.075 0.1

73.87 65.60 57.93 53.43 51.07
76.35 76.17 75.62 74.46 72.91
77.65 76.75 73.74 69.75 66.40
77.04 76.93 76.23 75.10 73.91
78.71 78.47 78.09 77.39 76.72
80.09 79.79 79.02 77.93 76.94

84.14 83.84 83.15 81.97 81.09


