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Abstract— With the growing use of machine learning algo-
rithms and ubiquitous sensors, many °‘perception-to-control’
systems are being developed and deployed. To ensure their
trustworthiness, improving their robustness through adversarial
training is one potential approach. We propose a gradient-free
adversarial training technique, named AutoJoin, to effectively
and efficiently produce robust models for image-based maneu-
vering. Compared to other state-of-the-art methods with testing
on over SM images, AutoJoin achieves significant performance
increases up to the 40% range against perturbations while
improving on clean performance up to 300%. AutoJoin is also
highly efficient, saving up to 86% time per training epoch
and 90% training data over other state-of-the-art techniques.
The core idea of AutoJoin is to use a decoder attachment to
the original regression model creating a denoising autoencoder
within the architecture. This architecture allows the tasks
‘maneuvering’ and ‘denoising sensor input’ to be jointly learnt
and reinforce each other’s performance.

I. INTRODUCTION

The wide adoption of machine learning algorithms and
ubiquitous sensors have together resulted in numerous
tightly-coupled ‘perception-to-control’ systems being de-
ployed in the wild. In order for these systems to be trustwor-
thy, robustness is an integral characteristic to be considered
in addition to their effectiveness. Adversarial training aims
to increase the robustness of machine learning models by
exposing them to perturbations that arise from artificial
attacks [1], [2] or natural disturbances [3]. In this work, we
focus on the impact of these perturbations on image-based
maneuvering and the design of efficient adversarial training
for obtaining robust models. The test task is ‘maneuvering
through a front-facing camera’~which represents one of the
hardest perception-to-control tasks since the input images are
taken from partially observable, nondeterministic, dynamic,
and continuous environments.

Inspired by the finding that model robustness can be
improved through learning with simulated perturbations [4],
effective techniques such as AugMix [5], AugMax [6],
MaxUp [7], and AdvBN [8] have been introduced for lan-
guage modeling, and image-based classification and segmen-
tation. The focus of these studies is not efficient adversarial
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training for robust maneuvering. AugMix is less effective to
gradient-based adversarial attacks due to the lack of suffi-
ciently intense augmentations; AugMax, based on AugMix,
is less efficient because it uses a gradient-based adversarial
training procedure, which is also a limitation of AdvBN.
MaxUp requires multiple forward passes for a single data
point to determine the most harmful perturbation, which
increases computational costs.

Recent work by Shen et al. [3] represents the state-of-
the-art, gradient-free adversarial training method for achiev-
ing robust maneuvering against image perturbations. Their
technique adopts Fréchet Inception Distance (FID) [9] to
determine distinct intensity levels of the perturbations that
minimize model performance. Afterwards, datasets of single
perturbations are generated. Before each round of training,
the dataset that can minimize model performance is selected
and incorporated with the clean dataset for training. A fine-
tuning step is also introduced to boost model performance
on clean images. While effective, examining the perturbation
parameter space via FID adds complexity to the approach and
using distinct intensity levels limits the model generalizabil-
ity and hence robust efficacy. The approach also requires
generating large datasets (2.1M images) prior to training,
burdening computation and storage. Additional inefficiency
and algorithmic complexity occur at training as the pre-
round selection of datasets requires testing against perturbed
datasets, resulting in vast data passing through the model.

We aim to develop a gradient-free and efficient adversarial
training technique for robust maneuvering. Fig. 1 illustrates
our approach, AutoJoin. We divide a steering angle pre-
diction model into an encoder and a regression head. The
encoder is attached by a decoder to form a denoising autoen-
coder (DAE). Using the DAE alongside the prediction model
is motivated by the assumption that prediction on clean data
is easier than on perturbed data. The DAE and the prediction
model are jointly learnt: when perturbed images are forward
passed, the reconstruction loss is added with the regression
loss, enabling the encoder to simultaneously improve on
‘maneuvering’ and ‘denoising sensor input. AutoJoin en-
joys efficiency as the extra computational cost stems only
from passing the intermediate features through the decoder.
AutoJoin is also easier to implement than Shen et al. [3] as
perturbations are randomly sampled within a moving range
that is determined by linear curriculum learning [10]. The
FID is used minimally to determine the maximum intensity
of a perturbation. The model generalizability and robustness



are significantly improved due to extensive exploration of the
perturbation parameter space, and ‘denoising sensor input’
provides the denoised training data for ‘maneuvering.’

We test AutoJoin on four real-world driving datasets:
Honda [11], Waymo [12], Audi [13], and SullyChen [14],
which total over SM clean and perturbed images and show
AutoJoin achieves the best performance on the maneu-
vering task while being the most efficient. For example,
AutoJoin outperforms [3] up to 20% in accuracy and 43%
in error reduction using the Nvidia [15] backbone, and up to
44% error reduction compared to other adversarial training
techniques when using the ResNet-50 [16] backbone. Auto-
Join is also highly efficient as it saves 8% per epoch time
compared AugMix [5] and saves 86% per epoch time and
90% training data compared to Shen et al. [3].

We provide extensive ablation studies. For example, we
find that using all perturbations (discussed in Sec. III-A)
instead of a subset can avoid up to a 45% accuracy reduction
and 51% error increase. We also find that not ensuring all
perturbations are seen during learning and using distinct
intensities from Shen et al. [3], as opposed to random in-
tensities, can cause up to a 16% error increase. Furthermore,
we observe that incorporating the denoised images generated
by the DAE into the training process leads to a decrease in
accuracy by up to 10% and an increase in error by 42%.
The project code and supplemental material is available at
https://github.com/Fluidic-City-Lab/AutoJoin.

II. RELATED WORK

Most adversarial training techniques against image per-
turbations to date have focused on image classification. For
example, AugMix [5] enhances model robustness and gen-
eralizability by layering randomly sampled augmentations
together. AugMax [6], a derivation of AugMix, trains on
AugMix-generated images and their gradient-based adver-
sarial variants. MaxUp [7] stochastically generates multiple
augmented images of a single image and trains the model on
the perturbed image that minimizes the model’s performance.
As a result, MaxUp requires multiple passes of data through
the model for determining the most harmful perturbation.
AdvBN [8] is a gradient-based adversarial training technique
that switches between batch normalization layers based on
whether the training data is clean or perturbed. It achieves
state-of-the-art performance when used with techniques such
as AugMix on ImageNet-C [17].

Recently, Shen et al. [3] has developed a gradient-free
adversarial training technique against image perturbations.
Their work uses Fréchet Inception Distance (FID) [9] to se-
lect distinct intensity levels of perturbations. During training,
the intensity that minimizes the current model’s performance
is adopted. While being the state-of-the-art method, the al-
gorithmic pipeline combined with pre-training dataset gener-
ation are inefficient. First, an extensive analysis is needed to
determine five intensity levels of perturbations. Second, the
data selection process during training requires testing various
combinations of perturbations and their distinct intensity
levels. Third, significant costs are required for generating

the pre-training datasets. In contrast, AutoJoin uses minimal
FID analysis to obtain one point instead of five, which
is then used for a range of intensities instead of having
distinct intensities. AutoJoin also discards the mid-training
data selection process in favor of ensuring all perturbations
are seen each epoch. Lastly, AutoJoin generates perturbed
datasets online during training.

DAEs have been used to improve model robustness for
driving [18]-[20]. For example, Wang et al. [21] use an
autoencoder to improve the accuracy of steering angle
prediction by removing various roadside distractions such
as trees or bushes. Their focus is not robustness against
perturbed images as only clean images are used in training.
DriveGuard [22] explores different autoencoder architectures
on adversarially degraded images that affect semantic seg-
mentation rather than the steering task. They show that
autoencoders can be used to enhance the quality of the
degraded images, thus improving overall task performance.
Xie et al. [23] and Liao et al. [24] use denoising as a
method component to improve on their tasks’ performance,
where the focus is gradient-based attacks [25], rather than
gradient-free perturbations. The tasks are also restricted to
classification instead of regression. Studies by Hendrycks et
al. [26] and Chen et al. [25] adopt self-supervised training
to improve model robustness. However, their focus is again
on (image) classification and not regression. To the best
of our knowledge, our work is the first gradient-free and
efficient adversarial training technique for improving model
robustness against perturbed image input in driving.

III. METHODOLOGY

The pipeline of AutoJoin in shown in Fig. 1. We use four
driving datasets Honda [11], Waymo [12], A2D2 [13], and
SullyChen [14]) in training and evaluation. During training,
each image is perturbed by selecting a perturbation from a
pre-determined set at a sampled intensity level (Sec. III-A).
The perturbed images are then passed through DAE and the
regression head for joint learning (Sec. III-B).

A. Image Perturbations and Intensity Levels

We use the same base perturbations as of Shen et al. [3] for
fair comparisons. We first perturb images’ RGB color values
and HSV saturation/brightness values in two directions,
lighter or darker according to v/, = a(ac||b:) + (1 — a)v,,
where v, is the perturbed pixel value, « is the intensity level,
a. is the channel value’s lower bound, b, is the channel
value’s upper bound, and v, is the original pixel value. a, is
used for the darker direction and has the default value O and
b. is used for the lighter direction and has the default value
255. Two exceptions exist: a. is set to 10 for the V channel to
exclude a black image, and b, is set to 179 for the H channel
according to its definition. The other base perturbations
include Gaussian noise, Gaussian blur, and radial distortion,
which are used to simulate natural corruptions to an image.
The Gaussian noise and Gaussian blur are parameterized by
the standard deviation of the image. Sample images of each
base perturbation are shown in Appendix I.
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Fig. 1: The pipeline of AutoJoin. The clean data comes from real-world driving datasets containing front-facing camera images and
their corresponding steering angles. The perturbed data is prepared using various base perturbations and their sampled intensity levels.
The steering angle prediction model and denoising autoencoder are jointly learnt to reinforce each other’s performance. The resulting
predictions and reconstructed images are used to compute the loss for adjusting perturbation intensity levels during learning.

In addition to the nine base perturbations, the channel
perturbations (i.e., R, G, B, H, S, V) are further discretized
into their lighter or darker components such that if p is a
channel perturbation, it is decomposed into py;gn: and pagri.
As a result, the perturbation set contains 15 elements. During
learning, we expose the model to all 15 perturbations with the
aim to improve its generalizability and robustness. We refer
to using the Full Set of 15 perturbations as FS in Sec. IV.
AutoJoin is trained on images with single perturbations, yet
proves effective not only on such images but also on those
with multiple and unseen perturbations.

The intensity level of a perturbation is sampled within
[0,¢). The minimum O represents no perturbation, and c is
the current maximum intensity. The range is upper-bounded
bY Cmaz, Whose value is inherited from Shen et al. [3]
to ensure comparable experiments. In practice, we scale
[0, Cimagz) to [0, 1). After each epoch of training, c is increased
by 0.1 providing the model loss has reduced comparing to
previous epochs. The entire training process begins on clean
images ([0,0)). In contrast to Shen et al., our approach
allows the model to explore the entire parameter space of
a perturbation (rather than on distinct intensity levels). We
refer to using Random Intensities as RI in Sec. IV. Further
exploration of the perturbation parameter space by altering
the minimum/maximum values is discussed in Appendix II.

B. Joint Learning

The denoising autoencoder (DAE) and steering angle
prediction model are jointly learnt. The DAE learns how
to denoise the perturbed sensor input, while the prediction
model learns how to maneuver given the denoised input.
Both models train the shared encoder’s latent representations,
resulting in positive transfer between the tasks for two
reasons. First, the DAE trains the latent representations to
be the denoised versions of perturbed images, which enables
the regression head to be trained on denoised representations
rather than noisy representations, which may deteriorate the
task performance. Second, the prediction model trains the
encoder’s representations for better task performance, and

Algorithm 1 AutoJoin

input: training batch {z;}, (clean images), encoder e,
decoder d, regression model p, perturbations M, curricu-
lum bound ¢
for each epoch do
for each i € 1,....,n do
Select perturbation op = M[i mod len(M)]
Sample intensity level [ from [0, ¢) randomly
y; = op(x;, 1) // perturb a clean image
z; = e(y;) // obtain the latent representation
x = d(z;) // reconstruct an image from the latent
representation
ap = p(z;) // predict a steering angle using the
latent representation
if i % len(M) = 0 then
Shuffle M // randomize the order of perturba-
tions
end if
end for
Calculate £ using Eq. 1
if £ improves then
Increase ¢ by 0.1 // increase the curriculum’s
difficulty
end if
Update e, d, and p to minimize £
end for
return e and p // for steering angle prediction

since the DAE uses these representations, the reconstructions
are improved in favoring the overall task.

Our approach is described in Algorithm 1. For a clean
image x;, a perturbation and its intensity [ € [0,c) are
sampled. The augmented image y; is a function of the
two and is passed through the encoder e(-) to obtain the
latent representation z;. Next, z; is passed through both the
decoder d(-) and the regression model p(-), where the results
are the reconstruction x; and steering angle prediction a,,,



respectively. We randomize the perturbation set every 15
images to prevent overfitting.

For the DAE, the standard ¢ loss is used by comparing
x} to x;. For the regression loss, /1 is used between ap, and
a,, where the latter is the ground truth angle. The two losses
are combined for the joint learning:

,C = )\162 (Xg,Xi) + )\2£1 (api, ati) . (l)

The weights A; and Ay are set as follows. For the
experiments on the Waymo [12] dataset, A; is set to 10
and Ay is set to 1 for better performance (emphasizing
reconstructions). For the other three datasets, \; is set to
1 and Ay is set to 10 to ensure the main focus of the
joint learning is ‘maneuvering.” Once training is finished, the
decoder is detached, leaving the prediction model for testing
through datasets in six categories (see Sec. IV-A for details).

1V. EXPERIMENTS AND RESULTS
A. Experiment Setup

We compare AutoJoin to five other approaches: Shen
et al. [3] (referred to as Shen hereafter), AugMix [5],
MaxUp [7], AdvBN [8], and AugMax [6]. We also compare
to a Standard model, one trained using only clean images,
and a Standard model trained with the Full Set of 15
perturbations and Random Intensities discussed in Sec. III-
A. We test on two backbones, the Nvidia model [15] and
ResNet-50 [16]. The breakdown of the two backbones is
detailed in Appendix I. We use four driving datasets in
our experiments: Honda [11], Waymo [12], A2D2 [13], and
SullyChen [14]. They have been widely adopted for devel-
oping machine learning models for driving-related tasks [3],
[27]-[29]. Based on these four datasets, we generate test
datasets according to Shen to ensure fair comparisons. The
test datasets contain more than 5M images in four categories:
Clean, Single, Combined, and Unseen. Combined contains
images each with several single perturbations overlaid and
Unseen contains unobserved images with perturbations ex-
tracted from the ImageNet-C dataset [17]. Sample images
for each category are given in Fig. 2. The details of these
datasets and more sample images are given in Appendix I.

We evaluate our approach using mean accuracy (MA) and
mean absolute error (MAE). MA is defined as

ZG’CCTGT/‘TL ace; = count(la, —ar| < 7)/m,  (2)

T

where n denotes the number of test cases, 7 = {1.5, 3.0,
7.5, 15.0, 30.0, 75.0}, and ap, and a; are the predicted
angle and true angle, respectively. Note that we do not
use the AMAI/MMALI metrics, which are derived from MA
scores, from Shen since AMAI/MMALI only show perfor-
mance improvement while the actual MA scores are more
comprehensive. All experiments are conducted using Intel
Core i7-11700k CPU with 32G RAM and Nvidia RTX 3080
GPU. We use the Adam optimizer [30], batch size 124, and
learning rate 10~ for training. All models are trained for
500 epochs.

TABLE I: Results on the SullyChen dataset using the Nvidia
backbone. AutoJoin outperforms all other techniques in all test
categories and improves the clean performance three times over
Shen when compared to Standard.

Clean Single Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE
Standard 86.19 335 66.19 1133 3850 2503 6738 1094
Standard (FSRI) 78.21 4.73 74.91 5.97 61.54 11.93 71.98 7.24
AdvBN 79.51 5.06 69.07 9.18 44.89 20.36 67.97 9.78
AugMix 86.24 3.21 79.46 5.21 49.94 1724 7473 7.10
AugMax 85.31 343 81.23 4.58 51.50 1725 7645 6.35
MaxUp 79.15 4.40 77.40 5.01 61.72 12.21 73.46 6.71
Shen 87.35 3.08 84.71 3.76 53.74 16.27 78.49 6.01
AutoJoin 89.46 2.86 86.90 3.53 64.67 1121  81.86 5.12

TABLE II: Results on the A2D2 dataset using the Nvidia back-
bone. AutoJoin outperforms every other approach in all test cate-
gories while improving on Clean by a wide margin of 4.2% MA
compared to Shen, achieving 168% performance increase.

Clean Single Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE
Standard 78.00 8.07 61.51 2142  43.05 2855 5941 2672
Standard (FSRI) ~ 77.95 8.33 71.31 8.64 7245 1039  74.04 1049
AdvBN 76.59 8.56 67.58 12.41 43.75 24.27 70.64 11.76
AugMix 78.04 8.16 73.94 10.02 58.22 20.66 71.54 11.44
AugMax 77.21 8.79 75.14 10.43 60.81 23.87 72.74 11.87
MaxUp 78.93 8.17 78.36 8.42 7156 1322 76.78 9.24
Shen 80.50 7.74 78.84 8.32 6740 1506 7530 9.99
AutoJoin 84.70 6.79 83.70 7.07 79.12 8.58 80.31 8.23

B. Results

The main results, components of AutoJoin, and efficiency
analysis are discussed in Sec. IV-B.1, Sec. IV-B.2, and
Sec. IV-B.3, respectively. The results reported are the av-
erages over all test cases of a given test category.

1) Effectiveness Against Gradient-free Perturbations:
Table I shows the comparison results on the SullyChen
dataset using the Nvidia backbone. AutoJoin outperforms
every other adversarial technique across all test categories in
both performance metrics. In particular, AutoJoin improves
accuracy on Clean by 3.3% MA and 0.58 MAE compared
to the standard model trained solely on clean data. This
result is significant as the clean performance is the most
difficult to improve while AutoJoin achieves about three
times the improvement on Clean compared to Shen. Tested
on the perturbed datasets, AutoJoin achieves 64.67% MA on
Combined — a 20% accuracy increase compared to Shen,
11.21 MAE on Combined — a 31% error decrease compared
to Shen, and 5.12 MAE on Unseen — another 15% error
decrease compared to Shen.

Table II shows the comparison results on the A2D2 dataset
using the Nvidia backbone. AutoJoin again outperforms all
other techniques. To list a few notable improvements over
Shen: 6.7% MA improvement on Clean to the standard
model, which is a 4.2% performance increase; 11.72%
MA improvement — a 17% accuracy increase, and 6.48
MAE drop — a 43% error decrease on Combined; 5.01%
MA improvement — a 7% accuracy increase and 1.76 MAE
drop — a 8% error decrease on Unseen.

Switching to the ResNet-50 backbone, Table III shows
the results on the Honda dataset. Here, we only compare to
Shen and AugMix because Shen is the latest technique and
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Fig. 2: Sample perturbed images. Single is perturbed by only one of the perturbations outlined in Sec. III-A Unseen contains corruptions
from ImageNet-C [17]. Single and Unseen are selected with intensities from 0.5 to 1.0 to highlight the perturbation. Combined images
have multiple perturbations overlaid, e.g., Set 2 includes G, noise, and blur as the most prominent perturbations.

TABLE III: Results of comparing AutoJoin to AugMix and Shen
on the Honda dataset using ResNet-50. AutoJoin achieves the
best overall robust performance. However, Shen’s fine-tuning stage
solely on Clean images grants them an advantage on Clean.

Clean Single Combined Unseen
MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE
Standard 92.87 1.63 73.12 1186 5501 2273  69.92  13.65
Standard (FSRI)  88.58 227 86.11 3.30 47.85  39.12 8193 4.92
AugMix 90.57 1.97 86.82 3.53 64.01 15.32 84.34 4.31
Shen 97.07 0.93 93.08 2.52 70.53 1320 8791 4.94
AutoJoin 96.46 1.12 94.58 1.98 70.70 14.56 91.92 2.89

TABLE IV: Results of comparing our approaches (AutoJoin and
AutoJoin-Fuse) to AugMix and Shen on the Waymo dataset using
ResNet-50. Our approaches not only improve on Clean the most,
but also achieve the best overall robust performance.

Clean Single Combined Unseen
MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE
Standard 61.83 1953 5599 31.78 4566 5581 5774 2422
Standard (FSRI) ~ 61.83  20.15 6145 2029 5695 2494 6056 21.06
AugMix 61.74 19.19 60.83 20.10 56.34 2423 59.78 21.75
Shen 64.77 1801 64.07 1977 61.67 2028 6393 18.77
AutoJoin 64.91 1802 6384 1930 5874 2642 6417 19.10

AutoJoin-Fuse 65.07 17.60 64.34 1849 6348 20.82 65.01 18.17

AugMix was the state-of-the-art before Shen, which also has
the ability to improve both clean and robust performance
on driving datasets. As a result, AutoJoin outperforms both
Shen and AugMix on perturbed datasets in most categories.
Specifically, AutoJoin achieves the highest MAs across all
perturbed categories. AutoJoin also drops the MAE to 1.98
on Single, achieving 44% improvement over AugMix and
21% improvement over Shen; and drops the MAE to 2.89
on Unseen, achieving 33% improvement over AugMix and
41% improvement over Shen. On this particular dataset,
Shen outperforms AutoJoin on Clean by small margins due
to its additional fine-tuning step on Clean. Nevertheless,
AutoJoin still manages to improve upon the standard model
and AugMix on Clean by large margins.

During testing, we find Waymo to be unique in that the
model benefits more from learning the inner representations
of the denoised images. Therefore, we slightly modify the
procedure of Algorithm 1 after perturbing the batch as

TABLE V: Results of comparing AutoJoin with or without DAE
on the SullyChen dataset with the Nvidia backbone. Using DAE
allows AutoJoin to achieve three times the performance gain on
Clean over Shen. AutoJoin without DAE performs worse than Shen
on Clean and Single MAE. Ours without FSRI performs worse than
Shen, but better than AugMix. These changes result in our method
performing worse than Shen, showing the necessity of AutoJoin’s
pipeline design.

Clean Single Combined Unseen
MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE
Standard 86.19 335 66.19 1133 3850 25.03 67.38 10.94
AugMix 86.24 3.21 79.46 5.21 4994 1724 7473 7.10
Shen 87.35 3.08 84.71 3.76 53.74 16.27 78.49 6.01
Ours, w/o DAE 88.30 3.09 85.75 3.81 6296 1190  81.09 5.33

Ours, w/o FSRI 86.43 3.54 83.19 4.62 61.97 13.01 7851 6.23
Ours (AutoJoin)  89.46 2.86 86.90 3.53 64.67 1121  81.86 5.12

follows: 1) one-tenth of the perturbed batch is sampled; 2)
for each single perturbed image sampled, two other perturbed
images are sampled; and 3) the three images are averaged
to form a ‘fused’ image. This is different from AugMix as
AugMix applies multiple perturbations to a single image. We
term this alternative procedure AutoJoin-Fuse.

Table IV shows the results on the Waymo dataset us-
ing ResNet-50. AutoJoin-Fuse makes a prominent impact
by outperforming Shen on every test category except for
combined MAE. We also improve the clean performance
over the standard model by 3.24% MA and 1.93 MAE.
AutoJoin also outperforms AugMix by margins up to 7.14%
MA and 3.41 MAE. These results are significant as for all
four datasets, the well-performing robust techniques operate
within 1% MA or 1 MAE. While not the focus of this
project, we additionally explore AutoJoin’s effectiveness
against gradient-based adversarial examples. The results and
discussion are provided in Appendix VII

2) Effectiveness of AutoJoin Pipeline: DAE and Feed-
back Loop. A major component of AutoJoin is DAE. The
results of our approach with or without DAE are shown in
Table V. AutoJoin without DAE outperforms Shen in several
test categories but not on Clean and Single MAE, meaning
the perturbations and sampled intensity levels are effective



TABLE VI: Results on the SullyChen dataset with the Nvidia
backbone using six subsets of the base perturbations. ‘w/o BND’
means no presence of blur, noise, and distort. Single is removed for
a fair comparison. Using all base perturbations results in the best
overall performance.

Clean Combined Unseen

MA (%) MAE MA (%) MAE MA (%) MAE
w/o RGB 87.71 3.00 58.88 14.71 81.23 5.13
w/o HSV 88.33 291 50.22 18.05 7891 6.04
w/o BND 88.24 3.05 59.49 12.80 80.45 5.55
RGB 88.24 3.13 44.41 23.05 78.31 6.48
HSV 88.66 3.04 54.78 15.35 80.60 5.60
RGB + Gaussian noise 88.39 3.15 65.05 11.25 80.17 5.75
HSV + Gaussian noise 86.70 3.52 63.34 11.82 79.49 5.87
w/o Blur & Distort 87.29 3.56 65.78 10.88 80.43 5.57
All 89.46 2.86 64.67 11.21 81.86 5.12

for performance gains. In addition, a byproduct of DAE
is denoised images. A natural idea is to use these images
as additional training data for the prediction model, thus
forming a feedback loop within AutoJoin. We explore the
feedback loop in greater detail in Appendix III. Overall, we
find a decrease in performance due to the feedback loop, thus
we exclude it from the AutoJoin’s pipeline.

Perturbations and Intensities. To better understand the
base perturbations, we conduct experiments with six differ-
ent perturbation subsets: 1) No RGB perturbations, 2) No
HSV perturbations, 3) No blur, Gaussian noise, or distort
perturbations (denoted as BND), 4) only RGB perturbations
and Gaussian noise, 5) only HSV perturbations and Gaussian
noise, and 6) no blur or distort perturbations. These subsets
are formed to examine the effects of the color spaces and/or
blur, distort, or Gaussian noise. We exclude Single from the
results, shown in Table VI as different subsets will cause
Single becoming a mixture of unseen and seen perturbations.
Not using blur or distort outperforms using all perturbations
within Combined by 1.11 MA and 0.33 MAE, but not within
Clean and Unseen. We observe that using RGB perturbations
tends to result in better Clean performance. Not using
the HSV perturbations results in the worse generalization
performance out of the models with 50.22% MA and 78.91%
MA in Combined and Unseen, respectively. Overall, we find
that using all 15 perturbations is necessary for maximal
performance. More results and findings for the other driving
datasets is given in Appendix V.

We also assess AutoJoin’s performance without using
the Full Set of 15 perturbations and Random Intensities
(FSRI), which are described as AutoJoin without FSRI in
Table V. In this case, perturbations are randomly sampled
during the learning process, and Shen’s distinct intensity
values are adopted. The results show a significant decrease in
performance when FSRI are excluded. Thus, both FS and RI
are necessary for optimal performance and to surpass Shen.
More results and details on the FS and RI components for
different datasets are provided in Appendix IV.

3) Efficiency: We use AugMix/Shen + the Honda/Waymo
datasets + ResNet-50 as the baselines for testing the effi-
ciency. On the Honda dataset, AutoJoin takes 109 seconds
per epoch on average, while AugMix takes 118 seconds and
Shen takes 759 seconds. Our approach saves 8% and 86%

per epoch time compared to AugMix and Shen, respectively.
On the Waymo dataset, AugMix takes 128 seconds and Shen
takes 818 seconds, while AutoJoin takes only 118 seconds
— 8% and 86% time reduction compared to AugMix and
Shen, respectively. Note that the time listed for Shen excludes
perturbation selection process during training, which adds
to overall training time. More time comparisons such as
AugMix/Shen on the Sully/A2D2 datasets with the Nvidia
backbone can be found in Appendix VI. Lastly, our approach
requires 90 % less training data needed by Shen: we perturb
the original clean dataset during the training process, unlike
Shen’s method of creating nine perturbed datasets (one for
each base perturbation) beforehand and combining them with
the clean dataset.

V. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We propose AutoJoin, a gradient-free adversarial training
technique that is simple yet effective and efficient for robust
maneuvering. We show that AutoJoin outperforms state-of-
the-art adversarial techniques on various real-word driving
datasets through extensive experimentation. AutoJoin is the
most efficient technique tested on by being faster per epoch
compared to AugMix and saving 83% per epoch time and
90% training data over Shen

AutoJoin is constrained to the regression task of au-
tonomous driving rather than being a general-purpose data
augmentation technique. Our focus is on autonomous driving
given the significance in making autonomous driving systems
robust to perturbations considering the real-world impacts
(such as accidents or fatalities) that could occur if such
driving systems fail. Another limitation is that while we use
real-world images for training/testing, we have not deployed
AutoJoin in a real-world test driving scenario. This limits
our understanding of how AutoJoin would work within day-
to-day driving scenarios. Such testing would be absolutely
necessary in order to ensure the efficacy of AutoJoin in
autonomous driving systems and the safety of all parties
during the testing scenario.

In the future, we are interested in expanding AutoJoin
to explore wider perturbation space and more intensity
levels to remove any use of FID as well as using other
perturbation sets. Furthermore, we would like to explore
means to improve clean and combined performance on the
Honda/Waymo datasets with ResNet-50. Although our work
lacks theoretical support, this remains an open problem
since the state-of-the-art techniques we compared with also
lack theoretical evidence. Seeking theoretical support for
our findings would be an interesting research direction. The
Appendix of this work can be found in the GitHub repository:
https://github.com/Fluidic-City-Lab/AutoJoin.
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