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Abstract— Traffic congestion is a persistent problem in our
society. Previous methods for traffic control have proven futile
in alleviating current congestion levels leading researchers to
explore ideas with robot vehicles given the increased emergence
of vehicles with different levels of autonomy on our roads. This
gives rise to mixed traffic control, where robot vehicles regulate
human-driven vehicles through reinforcement learning (RL).
However, most existing studies use precise observations that
require domain expertise and hand engineering for each road
network’s observation space. Additionally, precise observations
use global information, such as environment outflow, and local
information, i.e., vehicle positions and velocities. Obtaining this
information requires updating existing road infrastructure with
vast sensor environments and communication to potentially
unwilling human drivers. We consider image observations, a
modality that has not been extensively explored for mixed
traffic control via RL, as the alternative: 1) images do not
require a complete re-imagination of the observation space
from environment to environment; 2) images are ubiquitous
through satellite imagery, in-car camera systems, and traffic
monitoring systems; and 3) images only require communication
to equipment. In this work, we show robot vehicles using image
observations can achieve competitive performance to using
precise information on environments, including ring, figure
eight, intersection, merge, and bottleneck. In certain scenarios,
our approach even outperforms using precision observations,
e.g., up to 8% increase in average vehicle velocity in the merge
environment, despite only using local traffic information as
opposed to global traffic information.

I. INTRODUCTION

Traffic congestion is a prevalent challenge in modern
society, causing delays, gridlocks, and substantial economic
losses. Traditional traffic management methods such as traffic
lights, stop signs, and ramp meters have proven insufficient in
alleviating the current level of congestion [1], [2]. As more
vehicles with varying degrees of autonomy are introduced
into our transportation system, the idea of mixed traffic
control, which involves the use of robot vehicles (RVs) to
regulate human-driven vehicles (HVs), is gaining popularity
as a potential solution. Studies have shown the effectiveness
of this approach in stabilizing traffic on roads of different
configurations, including ring and figure-eight roads [3],
merge and bottleneck roads [4], intersections [4], [5], [6],
[7], [8]. Among various control methods for mixed traffic,
reinforcement learning (RL) has emerged as a promising
tool, as it can handle the complex behaviors of mixed traffic
without using predefined models or heuristics [9].

1Michael Villarreal, Bibek Poudel, and Weizi Li are with the Min
H. Kao Department of Electrical Engineering and Computer Science
at the University of Tennessee, Knoxville, TN, USA {tvillarr,
bpoudel3}@vols.utk.edu; weizili@utk.edu

2Jia Pan is with the Department of Computer Science at the University
of Hong Kong, China jpan@cs.hku.hk

Existing studies of mixed traffic control via RL predomi-
nantly uses precise traffic conditions as policy input [4], [5],
[10], [11], [12]: the RV receives both exact global informa-
tion such as network throughput and travel time as well as
exact local information such as nearby vehicles’ positions
and velocities. While effective, using precise observations
necessitates completely re-designing the observation space
across different road environments [3], [4], [5], [13], which
requires costly hand-engineering and domain expertise. For
example, the figure-eight environment (Fig. 1B) uses all
vehicles’ positions and velocities, while the bottleneck envi-
ronment (Fig. 2) uses averaged position and velocity of HVs
and RVs in combination with network outflow.

In practice, for RV to obtain accurate global information,
road sensor infrastructure is needed for data collection.
Overhauling current road networks for this purpose requires
substantial expenses. To receive precise local information,
RV needs to establish vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communications. V2I again needs
augmented infrastructure with a multitude of sensors. V2V,
on the other hand, requires HVs to broadcast precise traffic
information and engage in constant communication, which is
difficult to achieve. An alternative to avoid these pitfalls is
using image observations (instead of precise observations),
a modality commonly seen in robotics research [14], [15],
[16], [17], but rarely in mixed traffic control.

In this work, we use bird’s-eye view images centered on
RV as input to RL policies for mixed traffic control (see
Fig. 1). The images have generic resolutions and only capture
local traffic information. Our approach enjoys several bene-
fits. First, using images as input enables end-to-end training,
thus avoiding the need for manually designing observation
spaces. The process of capturing image observations can
be repeated over different road environments. Second, using
images can enable RVs to generalize to new environments
as it omits the global information of road networks. This
feature is particularly useful since the V2I support (which is
required to gain the global information) could vary signifi-
cantly in different areas. Third, HVs are relieved from V2V
communication—a setting greatly enhances the practicality
of mixed traffic control. Fourth, imagery about traffic con-
ditions is ubiquitous. Satellite imagery can capture traffic in
both cities and rural areas, where communication is sparse.
Our road infrastructure is equipped with ubiquitous camera
systems [18], [19], which provide real-time images of traffic.
Furthermore, modern cars’ cameras can capture 360◦ view
of the surroundings, which can be used to develop image
observations in real-time [20], [21], [22], [23]. The effec-
tiveness of our approach is demonstrated via comprehensive
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experiments. In summary, our contributions are as follows.
• We use image observations as policy input for RVs in

mixed traffic control. These images are both generic and
local: they only record the local surroundings of the
RVs. In contrast, global information is needed by the
RVs for control when using precise observations.

• We demonstrate the same-level performance of our
approach to using precise observations on various road
environments, including a ring road, a figure-eight road,
and a merge scene.

• We further achieve improved performance in several
cases as compared to using precise observations, e.g.,
an 8% increase in average vehicle velocity in the merge
environment.

To the best of our knowledge, our work is the first
to perform extensive experimentation on various road en-
vironments to demonstrate the feasibility of using image
observations for RL-based mixed traffic control in alleviating
traffic congestion.

II. RELATED WORK

A significant portion of training RVs via RL with images
focuses on individual vehicle driving but not controlling
entire traffic [24], [25]. For example, images are used with
vision transformers to learn an effective driving policy [26],
to train RVs to drive in simulation [27], [28], [29], [30], or
to prevent crashes by capturing the RVs’ surroundings [31].
While these studies apply RL and images to RVs, they do
not concentrate on traffic control.

Wu et al. [3] pioneer mixed traffic control using RL.
They show the effectiveness of training an RV on smoothing
out stop-and-go waves on a ring road. Further tests are
conducted by Vinitsky et al. [4] on additional environments,
including merge, bottleneck, and intersection scenarios. Re-
cently, Wang et al. [6] manage to scale up mixed traffic
control to real-world, complex intersections while controlling
and coordinating hundreds of vehicles. While significant
advancements have been made in mixed traffic control, all
these studies use precise observations as inputs to the RL
policy. These precise observations include both global and
local traffic conditions, such as environment outflow and
vehicle position and velocity.

Our work replaces these precise observations with image
observations in the training of RL policies for mixed traffic
control. This shift to image observations has several benefits.
First, it eliminates the requirement for manual design of the
observation space for different traffic scenarios, making it
a more flexible solution. Second, it can leverage existing
traffic infrastructure as image data is readily available from
sources such as satellite imagery, traffic monitoring systems,
and vehicle surround-view cameras.

Prior research use bird’s-eye view (BEV) images (which
is our image observations) with RVs. For example, signifi-
cant research develop BEV images for 3D object detection
and segmentation using modern cars’ multi-camera vision
systems [20], [21], [22]. Another work by Huang et al. [23]
develops a framework for real-time BEV image perception

using onboard vehicle chips. This research allows using
modern vehicles’ camera systems for mixed traffic control
at the pace needed to take actions.

Several studies explore mixed traffic control with images.
However, there are key differences between their efforts and
this project. A prior work presents a decentralized method for
training RVs with images [32], while another shows human
driving can be positively augmented using an RL controller
trained on local images [33]. Both studies only concern the
ring and/or figure eight environments and the focus is not
alleviating traffic congestion in varied road environments.

III. METHODOLOGY

We introduce our problem formulation and then outline the
details (observation and reward) for our five road environ-
ments. We also provide details on precise observations [3],
[4] and compare them to image observations.

A. Preliminaries

We model the RL problem as a Partially Observable
Markov Decision Process (POMDP) represented by a tuple
(S , A , P , R, p0, γ , T , Ω, O) where: S is the state
space; A is the action space; P(s′|s,a) is the transition
probability function; R is the reward function; p0 is the
initial state distribution; γ ∈ (0,1] is the discount factor; T is
the episode length (horizon); Ω is the observation space; and
O is the probability distribution of retrieving an observation
ω ∈ Ω from a state s ∈ S . At each timestep t ∈ [1,T ], a
robot vehicle (RV) uses its policy πθ (at |st) to take an action
at ∈ A , given the state st ∈ S . The RV’s environment
provides feedback on action at by calculating a reward rt
and transitioning the agent into the next state st+1. The RV’s
goal is to learn a policy πθ that maximizes the discounted
sum of rewards, i.e., return, Rt =∑

T
i=t γ i−tri. We use Proximal

Policy Optimization [34], a model-free, on-policy algorithm,
to learn the optimal policy.

B. Road Environments

We train RVs using RL on five road environments (ring,
figure eight, intersection, merge, and bottleneck) shown in
Fig. 1 and Fig. 2 using image observations. These envi-
ronments originate from FLOW [3], a RL framework for
traffic management. We give a brief environment description,
compare the differences between image observations and
precise observations, and provide the reward functions.

1) Ring: The ring environment is a widely used bench-
mark in traffic control [3], [9]. A single-lane circular road
environment consisting of 22 vehicles with 21 human-driven
vehicles (HVs) and one RV. For 3000 warmup timesteps,
the 22 vehicles act as HVs. During this warmup, subtle
perturbations from imperfect human driving behavior can
amplify leading some vehicle standstill. This situation is
stop-and-go traffic and acts as a wave backpropagating
continually through the ring. After the warmup period, the
RV begins taking actions for 3000 timesteps with the goal
to dampen and prevent these waves, thus increasing overall
average vehicle velocity.



Fig. 1. We experiment on five mixed traffic control environments (bottleneck shown in Fig 2), with image observations presented beneath them. Robot
vehicles (RVs) are red, while human-driven vehicles (HVs) are white. With image observations, HVs are cyan to provide contrast from the white background.
We use static, grayscale, 84× 84 images centered over RVs (or intersection) that provide only local information. Merge and bottleneck are multi-agent,
while the other three are single agent.

Our observation is a gray-scale image of dimensions 84×
84 pixels, centered on a single RV as shown in Fig. 1. To sim-
ulate limited visibility, the image is masked by a circle with
a radius corresponding to 28.75 meters in real world. Precise
observations are a vector of the RV’s velocity, the difference
between the leading vehicle’s velocity and the RV’s velocity,
and the difference between the leading vehicle’s position and
the RV’s position. This precise observation space has been
used to produce state-of-the-art performance [3]. The action
space is the continuous acceleration [−1,1] m/s2. The reward
function encourages high average velocity and small control
actions (acceleration) through a weighted combination:

r =
1
n ∑

i
vi −α ∗ |aRV | , (1)

where n = 22, v is vehicle velocity, α is four (chosen
empirically), and aRV is the RV’s acceleration.

2) Figure Eight: The figure eight environment simulates
an intersection in a closed loop with 14 vehicles–13 HVs
and one RV. From its shape and the number of vehicles in
the environment, queues form among cars trying to cross
the intersection. This causes a environment-wide decrease
in average vehicle velocity. The RV’s objective, over 1500
timesteps, is to increase all vehicle average velocity.

Our observation is the same as of the ring environment
(see Sec. III-B.1) with an example given in Fig. 1B. The
masked circle’s dimension corresponds to a 21.25 m radius.
Precise observations are the velocities and positions of all
vehicles within the figure-eight environment [3]. This com-
plete information reflects that the state space is used. As
our observations are local, i.e., images centered on the RV,
learning an optimal policy includes additional, challenging
steps of perception and representation learning compared to
precise observations. The action space is the continuous ac-
celeration [−3,3] m/s2. The reward function aims to increase
all vehicles’ velocity in the environment:

r =
max(∥vdes ∗1k ∥2 −∥vdes −Vall ∥2,0)

∥vdes ∗1k∥2
, (2)

where vdes (desired velocity) is 10 m/s (chosen empirically)
and k is the total number of vehicles in the environment.

3) Intersection: Intersection is an idealized two-way stop
where east/westbound traffic flow (500 vehicles/hour) is less
than north/southbound traffic flow (1333 vehicles/hour). This
flow difference causes east/westbound queues as it would
otherwise be unsafe to cross the intersection. RVs are placed
in the north/south directions with a penetration rate of 20%.
The RVs take actions, over 400 timesteps, to minimize queue
formation and increase average vehicle velocity along the
east/west directions. This environment allows for studying
mixed traffic control in directions absent of RVs since RVs
control only the north/south directions.

Our observation is an 84× 84, grayscale image (shown
in Fig. 1) taken solely at the intersection’s center. No circle
mask is applied to the images. The image dimensions corre-
spond to 50m×50m. Precise observations include global and
local traffic information, and consider a user-defined number
of vehicles closest to the intersection [4]. Specifically, precise
observations contain each vehicle’s velocity, each vehicle’s
position distance to the intersection, each vehicle’s edge
number (this identifies if the vehicle is in east/west traffic or
in north/south traffic), each edge’s density, and each edge’s
average vehicle velocity. Our observation is centered on
the intersection for a fair comparison as precise observa-
tions collect information using the center as a focal point.
However, we envision image observations being collected
from the RVs or a fusion between RVs and infrastructure.
Our RVs face a more difficult learning task due to their
limited radius observations preventing them from inferring
environment-wide information. Actions taken are defined by
the continuous acceleration [−7,7] m/s2. The reward function
penalizes both vehicle delay and vehicle standstills in traffic:

r =− t ∗∑((Vmax −Vall)/Vmax)

n+ eps
− (gain∗ ssn), (3)

where t is current timestep, Vmax is a vector of intersection’s
speed limit, Vall is a all vehicle velocity, n is number of
vehicles, eps prevents zero division, gain is 0.2, and ssn is the
number of standstill vehicles. Given the reward is negative,
the RVs’ goal is to minimize delay and vehicle standstills.

4) Merge: The merge environment contains a highway
and two merging on-ramps. We expand on the original



Fig. 2. Bottleneck environment with heterogeneous human-driven traffic.
We add motorcycles (behind leftmost and rightmost RVs), public buses (in
front of leftmost RV), semi-trucks (right of public bus), and delivery trucks
(diagonally behind the rightmost RV) alongside regular passenger vehicles.

environment [4], which only contains the one, right-side
on-ramp. The highway and on-ramps respective flows can
create stop-and-go waves along the highway and congest
the on-ramps, reducing the average velocity and outflow
(vehicles/hour). The RVs’ goal, for 750 timesteps, is to
minimize such wave formation and increase average vehicle
velocity. RVs are only placed on the highway at a 10%
penetration rate.

Our observation is a stack of five images, each of size 84×
84 (shown in Fig. 1 D.), centered on the RVs. We observe
at most five RVs. If there are less than five RVs present,
the remaining stack is padded with black images; if more,
the extra RVs are treated as HVs. The image dimensions
correspond to 41.25 m in real world. Precise observations are
a vector of the following [4]: the velocities of the following
and leading vehicle for each RV; the difference in positions
between the RV and the following and leading vehicles; and
the velocity of each RV. HVs on the on-ramp are observed
only if they are following vehicles or have merged onto the
highway. The action space is the continuous acceleration
[−1.5,1.5] m/s2. The reward function is:

r = Eq. 2−α ∑
iεRV s

max[hmax −hi(t),0], (4)

where hmax is empirically set to one and hi(t) is the headway
(the time distance between two consecutive vehicles) of an
RV at t. The latter half’s objective is to penalize small
headways between a RV and a HV to discourage traffic
bunching, potentially causing stop-and-go waves.

5) Heterogeneous Bottleneck: We also experiment on a
heterogeneous bottleneck environment (Fig. 2). The original
bottleneck environment [4], [11] has only four-door passen-
ger vehicles and simulates vehicles experiencing capacity
drop [35] on a bridge where an environment’s outflow
significantly decreases after the environment inflow surpasses
a threshold. The capacity drop comes from the lanes de-
creasing from 4× l to 2× l to l (where l is a scaling factor
and is one for our work). We expand the environment to
include heterogeneous HVs comprised (percentage of HVs)
of four-door passenger vehicles (70%), semi-trucks (10%),
motorcycles (10%), delivery trucks (5%), and public buses
(5%) to better reflect bridge traffic. RVs are only four-door
passenger vehicles. The penetration rate of the RV is 10%.
The RVs’ objective is improved outflow in 1000 timesteps
with 40 prior warmup timesteps.

Our observation consists of 15 stacked images, each of
size 84×84 (shown in Fig. 1), as a maximum of 15 RVs are
placed in the environment. If there are less than 15 RVs,

the remaining stack is filled with black images; if more
than 15 RVs, additional RVs are treated as HVs. The image
dimensions correspond to a circle with a radius of 25 m in
real world. Precise observations (collected on user-defined
road segments) contain: mean positions and velocities of
HVs, mean positions and velocities of RVs, and environment
outflow over the last twenty seconds. This observation is
difficult to design, consisting of macroscopic and micro-
scopic traffic statistics. Global information is considered
given segments are examined rather than individual vehicles,
which contrasts with out observations containing only local
information. Unlike previously defined environments where
the action is an acceleration range, here the action space is
the RVs’ velocity [0.01,23] m/s. The reward’s objective is
to increase the outflow of the environment and reduce the
frequency of capacity drops:

r = o10, (5)

where o10 is outflow over the last 10 seconds.

IV. EXPERIMENTS AND RESULTS

A. Experiment Setup

We train RVs using Proximal Policy Optimization [34],
with default hyperparameters from RLlib [36]. HVs are oper-
ated by Intelligent Driver Model (IDM) [37] with stochastic
noise in the range [−0.2,0.2] added to account for heteroge-
neous driving behaviors. RVs are trained for 200 episodes.

Trained policies are evaluated for 10 rollouts, and results
are presented as averages. The policies are convolutional
neural networks with filters (formatted as [out channels,
kernel size, stride]) of [16,8,4], [32,4,2], and [256,11,1]
followed by two fully-connected layers. Experiments are
conducted using i9-13900k CPU with 64GB RAM.

B. Results

1) Ring: We train the RV on rings with circumfer-
ence sampled uniformly from [220,270] m ring length
([81.25,100] density in Fig. 3). For testing, this range is
extended to [210,290] m ring length ([76,104.5] density in
Fig. 3). The results are shown in Fig. 3 LEFT. RVs trained
using image observations (blue) prevents stop-and-go waves
and achieve the same-level performance as RVs trained using
precise observations (red) at all densities.

Fig. 3 MIDDLE shows the time-space diagram of all
vehicles over an episode. The shockwaves from 200 to 300
seconds (one second equals 10 timesteps) reflect stop-and-go
traffic. After 300 seconds, the image-trained RV takes actions
by briefly accelerating and then stabilizes the traffic.

2) Figure Eight: In prior work [3], [4], the RV is trained
only on a single, inner-loop radius [3] (inner-loop radius is
used to calculate the overall environment length). We expand
the scenario by training on the range [20,30] m ([33,49]
density in Fig. 4 LEFT) and expand this range to [18,32] m
([31,54] density in Fig. 4 LEFT) during evaluation. The
efficacy of a trained RV is measured by the average vehicle
velocity at a particular traffic density.



Fig. 3. LEFT: An RV using image observations prevents stop-and-go waves at all densities, same as an RV using precise observations. MIDDLE and
RIGHT: Time-space diagrams showing stop-and-go waves (which form around 200 to 300 seconds) being alleviated after RVs start taking action. MIDDLE:
An RV trained on image observations prevents stop-and-go waves similar to an RV trained on precise observations. RIGHT: An RV trained using only
position information can also prevent stop-and-go waves. This gives further validity of using image observations without explicitly including the velocity
information in preventing stop-and-go waves.

Fig. 4. LEFT: An RV using image observations achieves mixed traffic control comparable to an RV with precise observations in figure eight. RIGHT:
Overall, RVs with image observations outperform RVs with precise observations by outperforming RVs with precise observations in 1100/200, 1300/200,
and 1500/200 by up to 8%.

Fig. 5. Comparison between the queue lengths at the end of an episode be-
tween all human drivers (cyan in mixed traffic) and mixed traffic using image
observations. RVs trained with image observations lessen east/westbound
congestion by decreasing queue lengths by two vehicles.

Fig. 4 LEFT shows that an image-trained RV can achieve
the same level of mixed traffic control as a precise-trained
RV. This same-level performance is in spite of the image-
trained RV only receiving local information compared to the
precise-trained RV having complete global/state information.

3) Intersection: We consider the average all vehicle ve-
locity and east/westbound queue lengths. RVs with image
observations attain 4.75±0.02 m/s average vehicle velocity
with a three vehicle queue length. RVs with precise observa-
tions obtain 5.90±0.23 m/s average vehicle velocity with a
three vehicle queue length. RVs with image observations can
provide similar performance to RVs with precise observa-
tions in regard to queue length. The average vehicle velocity
of RVs with image observations is less than RVs with

precise observations. We believe this performance difference
is due to precise global observations knowing exactly what
edges vehicles are on and their corresponding velocities,
which allow the RVs to know when HVs are at standstill
in the east/west directions. Both RV types outperform HVs
(3.50±0.00 m/s average velocity; five vehicle queue length)
in both evaluation metrics.

Fig. 5 illustrates the development of queues with only HVs
versus RVs with image observations. The southbound RV in
the right image is slowing down momentarily, which allows
east/westbound HVs to safely cross the intersection. Only
HVs travel at velocities that cause queue development in the
east/west directions.

4) Merge: Fig. 4 RIGHT presents our results. We evaluate
merge using five combinations of highway/merge inflow
rates (x-axis), {1100/200, 1300/100, 1300/200, 1500/200,
1500/300}. Merging on-ramps share inflow rates, and we
compare average vehicle velocities (y-axis) at those inflows.
This particular network setup and different inflow combi-
nations that cause varying congestion levels have not been
previously studied.

RVs with image observations outperform RVs with precise
observations at 1100/200, 1300/200, and 1500/200 inflow
rates by 7%, 8%, and 3%, respectively. RVs with precise
observations outperform RVs with image observations in
the 1300/100 inflows scenario, while both of them have
similar performance in the 1500/300 inflows scenario. RVs



with image observations provide the largest performance
improvement with a 1.29 m/s–an 8% increase–over us-
ing precise observations in the 1300/200 scenario. The
1500/300 scenario is difficult to learn on (evidenced by
both RV types improving performance over HVs the least)
as the inflow rates cause sufficient congestion inhibiting the
RVs’ potential to increase traffic flow from taking intelligent
actions. Overall, RVs with image observations outperform
RVs with precise observations.

5) Heterogeneous Bottleneck: We train on two inflows,
{2300, 2500}, and compare outflow over the last 500 sec-
onds. The different inflows allow for capturing different
congestion levels that allow for improvement through mixed
traffic control. At 2300 and 2500 inflows, RVs with image
observations obtain 1497.60 ± 26.94 and 1506.96 ± 29.17
outflows, respectively, while RVs with precise observations
obtain 1528.56 ± 49.26 and 1513.44 ± 24.90 outflows, re-
spectively. Both outperform HVs at 2300 and 2500 inflows,
which achieves 1448.64± 23.40 and 1447.20± 14.04 out-
flows, respectively. RVs with precise observations outper-
form RVs with image observations at both inflow rates. Al-
though at 2500 inflow, RVs with image observations achieve
an outflow close to RVs with precise observations. We
hypothesize that RVs with precise observations outperform
RVs with image observations because precise observations
contain network-wide traffic information, while image ob-
servations only contain local traffic state information.

6) Only Position Observations: We conduct an additional
experiment to test position-only observations in training
RVs using precise information in the ring environment. The
purpose is to analyze whether RVs can still be leveraged
to alleviate traffic congestion given only static positional
information, similar to positional inference using image
observations. Precise observations change to a vector of the
difference between the RV’s position and the leading vehi-
cle’s position. Fig. 3 RIGHT shows the time-space diagram
for this experiment. A RV with only position information can
achieve the same level of performance as of using complete
information (i.e., both position and velocity). This result
solidifies our approach of using image observations without
explicitly including the velocity information in preventing
stop-and-go wave formation.

C. Limitations and Discussion

In this project, we do not assume our RVs to be fully
autonomous vehicles with equipment and sensors to allow for
complete control. Our RVs control only their acceleration (or
velocity), which can be achieved by controlling the throttle
signal through a control mechanism using images that do
not require significant computational resources to process
and receive actions from. This partial autonomy mechanism
allows for a human, in a real-world setting, to still control
other vehicular functions (such as changing lanes, turning,
handling emergency situations, etc), while improving and
coordinating traffic conditions. The signals being sent to the
vehicle to control traffic conditions can be overwritten by

the human driver, which allows for a certain level of safety
within the system.

Transmitting image data in a V2V format is comparatively
expensive to transmitting precise observations as images
have higher dimensions. Drops/delays, resulting in data loss,
when communicating with other vehicles is an inevitabil-
ity [38], [39]. However, this issue can be mitigated by
using existing image compression/decompression techniques,
allowing significant image dimension reduction [40], [41],
[42]. Our approach communicates with less vehicles, making
the process easier, than precise observations as HVs are
not communicated with. Additionally, our approach requires
vehicles/infrastructure to be equipped with image sensors for
proper implementation. While some vehicles/infrastructure
may be too old or costly, advancements in image sensor
technology within cars and transportation infrastructure have
increased their prevalence and cost effectiveness.

Despite the generalizability of image observations, the
reward functions used are still environment and task spe-
cific. A general purpose reward function for transportation
environments is still an open problem given how task-specific
environments can be. Thus, finding a general purpose reward
function is out of scope; however, we believe finding such a
general reward function is interesting to pursue in the future
to further increase generalization.

V. CONCLUSION AND FUTURE WORK

In this work, we demonstrate the ability of robot vehicles
(RVs) to perform mixed traffic control using reinforcement
learning (RL) policies trained on image observations. We
examine RVs trained on image observations in the ring, fig-
ure eight, intersection, merge, and bottleneck environments.
Additionally, we expand on the figure eight network lengths
trained on, expand the merge environment and inflows
trained on, and expand the bottleneck environment to include
heterogeneous traffic and inflows trained on. We show that
RVs trained on image observations have competitive perfor-
mances to RVs trained on precise observations.

In the future, we aim to advance this study in several
directions. First, we want to test our approach on more
road networks, together with large-scale, long-term traf-
fic simulations [43], [44]. This could involve combining
multiple road networks together, where RVs must learn to
perform multiple tasks concurrently. While simulating these
scenarios is feasible, the increased task complexity presents
a challenge to the RV’s learning process. Second, we would
like to incorporate additional generic information such as
traffic state predictions [45] and vehicle trajectories into our
observation space for potential improvement. Lastly, we want
to explore the resilience aspect by taking adversarial attacks
and image perturbations into account [46].
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