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through robot vehicles at complex and
unsignalized intersections
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Abstract
Intersections are essential road infrastructures for traffic in modern metropolises. However, they can also be the bottleneck
of traffic flows as a result of traffic incidents or the absence of traffic coordination mechanisms such as traffic lights.
Recently, various control and coordination mechanisms that are beyond traditional control methods have been proposed to
improve the efficiency of intersection traffic by leveraging the ability of autonomous vehicles. Among these methods, the
control of foreseeable mixed traffic that consists of human-driven vehicles (HVs) and robot vehicles (RVs) has emerged. We
propose a decentralized multi-agent reinforcement learning approach for the control and coordination of mixed traffic by
RVs at real-world, complex intersections—an open challenge to date. We design comprehensive experiments to evaluate the
effectiveness, robustness, generalizablility, and adaptability of our approach. In particular, our method can prevent
congestion formation via merely 5% RVs under a real-world traffic demand of 700 vehicles per hour. In contrast, without
RVs, congestion will form when the traffic demand reaches as low as 200 vehicles per hour. Moreover, when the RV
penetration rate exceeds 60%, our method starts to outperform traffic signal control in terms of the average waiting time of
all vehicles. Our method is not only robust against blackout events, sudden RV percentage drops, and V2V communication
error, but also enjoys excellent generalizablility, evidenced by its successful deployment in five unseen intersections. Lastly,
our method performs well under various traffic rules, demonstrating its adaptability to diverse scenarios. Videos and code
of our work are available at https://sites.google.com/view/mixedtrafficcontrol.
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1. Introduction

Traffic flow is the beating heart of a city, driving eco-
nomic growth and ensuring daily lives. Despite the im-
plementation of various traffic control methods,
including traffic signals, ramp meters, and tolls, traffic
congestion continues to be a global issue, with external
expenses amounting to over $100 billion annually
(Schrank et al., 2021). Modern urban road networks
largely consist of linearly-coupled roads interconnected
by intersections. The key to this design’s functionality is
the intersection, which enables traffic flows to inter-
change and disperse. Any intersection blockage can
disrupt traffic from all directions, leading to traffic
spillover and even city-wide gridlock. Unfortunately,
intersections are vulnerable to traffic incidents with more
than 45% of all crashes taking place at intersections in the
U.S. (Choi, 2010) and are susceptible to extreme weather
and energy shortages, which can leave intersections
without control for days or even weeks, paralyzing the
traffic (Press, 2022; Winck, 2022; Ramirez, 2022). This

raises the question: How can we ensure uninterrupted
traffic flows at intersections?

While current transport control methods have limited
effectiveness in mitigating traffic delays and congestion,
connected and autonomous vehicles (CAVs) (Spielberg
et al., 2019; Feng et al., 2023; Pek et al., 2020) offer
new opportunities. Recent studies (Sharon and Stone, 2017;
Yang and Oguchi, 2020) have demonstrated the possibilities
of using autonomous vehicles to enhance intersection traffic
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throughput. However, these studies presume universal
connectivity and centralized control of all autonomous
vehicles, a scenario that may not materialize soon. The
transition to varying levels of autonomous vehicles will be
gradual, with a prolonged period of mixed traffic comprised
of both human-driven vehicles (HVs) and robot vehicles
(RVs). Despite the challenge in modeling and controlling
mixed traffic due to the diversity and suboptimality of
human drivers, mixed traffic control is possible through
algorithmically determining the behaviors of RVs to reg-
ulate HVs (Wu et al., 2022). While progress has been made
(see Section 2 for details), no evidence exists to demonstrate
the feasibility of controlling mixed traffic through RVs at
real-world, complex intersections where a large number of
vehicles may potentially conflict. However, being able to
control traffic at real-world intersections is an essential step
toward citywide traffic control and unveiling full societal
benefits of autonomous vehicles (Urmson and Whittaker,
2008).

In this project, we study mixed traffic control at real-
world intersections through RVs. The intersection layouts
and reconstructed traffic are shown in Figure 1 LEFT. To
test the limit of mixed traffic control and explore the en-
visioned benefits of RVs to our traffic system, we further
assume these intersections are unsignalized, with the flow of
traffic entirely and solely controlled by RVs. Numerous
challenges abound under such an assumption, such as
modeling mixed traffic behavior and designing a repre-
sentation of traffic conditions that encompasses diverse
topologies and dynamically fluctuating real-world traffic
demands.

We propose a model-free reinforcement learning (RL)
approach for mixed traffic control at complex intersections.
When approaching an intersection, an RV will first observe
the traffic condition via local perception and vehicle-to-
vehicle (V2V) communication, and then encode the ob-
servation as input to a mixed traffic control policy. The
policy will output a high-level decision of whether the RV

should enter or not enter the intersection independently
from other RVs. Our approach falls into the paradigm of
centralized training and decentralized execution. RVs are
centrally trained with a shared policy and reward function,
which accounts for traffic efficiency and potential conflicts.
During execution, all RVs make independent decisions
while collectively ensuring smooth traffic flow at the in-
tersection without explicit coordination. We also design a
conflict resolution mechanism for eliminating potential
conflicts at the intersection, which significantly boosts
training efficiency and road safety.

We conduct comprehensive experiments under high-
fidelity traffic reconstruction and simulation. The real-
world traffic data provided by the city of Colorado
Spring, CO, USA is used to reconstruct the simulated traffic
flow, validating that our training environments and evalu-
ation experiments closely resemble real-world conditions.
Our overall results show that, with 60% or more RVs, our
method outperforms traditional traffic light control in terms
of traffic efficiency in most scenarios. For example, the
average waiting time of all vehicles is reduced by 25.9% and
40.7% compared to employing traffic lights at intersection I,
when the RV penetration rate is 70% and 90%, respectively.
With 100% RVs, our method reduces the average waiting
time of the entire intersection traffic up to 42% compared to
traffic light control and 89% compared to the traffic light
absence baseline. We further explore the relationship be-
tween traffic demands, congestion, and RV penetration
rates. We find with just 5% RVs, our method can prevent
congestion from developing under the actual traffic demand
of 700 vehicles per hour (v/h). In contrast, without RVs,
congestion will form at an (unsignalized) intersection when
traffic demand reaches as low as 200 v/h.

Besides effectiveness, we also desire robustness, gen-
eralizablility, and adaptability of our method. For robust-
ness, we conduct a “blackout” experiment to show the
ability of our approach to stabilize the traffic flow when
traffic lights suddenly stop working and traffic control

Figure 1. LEFT: We study real-world, complex intersections located at Colorado Springs, CO, USA. The traffic is reconstructed using
the actual traffic data collected at these intersections (more details of these intersections are in Table 2). RIGHT: Comparison of state-
of-the-art studies on intersection traffic control. The references can be found in Section 2 related work.
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transitions to our system. During the blackout, the RVs act
as self-organized “traffic lights” coordinating the traffic at a
high throughput. We also examine the impact of sudden RV
rate drops. The results show that even with 40% drop (from
90% to 50%), our method still maintains stable and efficient
traffic flows at the intersection. Next, we analyze the impact
of observation errors on traffic conditions due to varied V2V
connectivities and range settings, simulated through multi-
hop communication and packet error events. As a result, our
method is robust even under extreme situations, such as 3-
hop communication and a 20% packet error rate (PER). This
hints the practicality of our method in real-world deploy-
ment. For generalizablility, we deploy our method without
any modification or tuning at five unseen intersections: Not
only does our method eliminate congestion, but with 60–
70% RVs, it also surpasses traffic light control in reducing
the average waiting time for all vehicles. For adaptability,
our method can adapt to various traffic rules, such as left-
hand traffic, by incorporating and regulating the right-turn
traffic streams. The results show comparable performance to
the original policy, illustrating the flexibility of our method
and its applicability across different countries.

In summary, our work is the first to demonstrate the fea-
sibility of controlling and coordinating mixed traffic at un-
signalized intersections with complex topologies and real-
world traffic demands. As many challenges are addressed
for the first time in mixed traffic control, we hope that our
design can provide insights into these challenges and stimulate
future endeavors in the field. Our code can be found at https://
github.com/daweidavidwang/MixedTrafficControl.

2. Related work

2.1. Unsignalized intersection control

There are two common approaches to control and coordi-
nate traffic at intersections (Rios-Torres and Malikopoulos,
2016). The first and extensively studied is traffic signal
control (Wei et al., 2019; Mohamed and Radwan, 2022;
Jácome et al., 2018). Our work differs from this line of
research by considering intersections unsignalized. The second
is the intersection management system (Miculescu and
Karaman, 2019; Malikopoulos et al., 2018), which com-
monly requires the central control of all vehicles. This is not
applicable to mixed traffic given the flexibility of HVs. Re-
cently, there has been growing research on using reinforcement
learning (RL) to control and coordinate traffic due to RL’s
model-free nature and its ability to test a diverse range of
scenarios through simulationwithout jeopardizing the safety of
participants (Yan and Wu, 2021; Yan et al., 2022).

We analyze the complexity of scenarios utilized in
previous methods for controlling unsignalized intersections.
The comparison of our work and example studies is pre-
sented in Figure 1 RIGHT. As these studies do not provide
all measurements, we offer our best estimates. To provide
some details, COOR-PLT (Li et al., 2023a) uses a two-layer
hierarchical RL approach that centrally forms RV platoons,

and then decentrally coordinate those platoons at the in-
tersection. DASMC (Zhou et al., 2022) combines
microscropic-level virtual platooning and macroscopic-
level traffic flow regulation to coordinate RVs across un-
signalized intersections. Yang and Oguchi (2020) propose
an intersection delay model that predicts total vehicle delay
and assigns optimally-controlled actions to RVs to minimize
the delay. Malikopoulos et al. (2018) define the control of
intersection traffic as an energy minimization program. By
solving the program, lower fuel consumption and travel
times are achieved. Mirheli et al. (2019) define a cooperative
trajectory planning to control and coordinate RVs through
unsignalized intersections. Chen et al. (2022) consider local
conflicts among RVs at unsignalized intersections. Yan and
Wu (2021) use RL to control mixed traffic through RVs at
two-way/four-way unsignalized intersections. Miculescu
and Karaman (2019) define a polling systems-based algo-
rithm that provides safe and efficient coordination. Spatharis
and Blekas (2024) present a multi-agent RL method to
control traffic at intersections. Xu et al. (2021) introduce a
centralized scheme for scheduling autonomous vehicles
under signal-free conditions. Zheng et al. (2022) propose a
cooperative multi-agent proximal optimization algorithm
for coordinating connected autonomous vehicles.
Mavrogiannis et al. (2023) present a method for abstracting
road traffic to aid in traffic analysis and vehicle control at
intersections. Wu et al. (2023) achieve unsignalized inter-
section control using mixed integer nonlinear programming.
Yan et al. (2021) propose an RL method to optimize mixed
traffic flow at three-way intersections. Our work differen-
tiates from all studies mentioned above, as we specifically
address intersection scenarios with complex topologies and
real-world traffic demands—an open challenge to date.

2.2. Mixed traffic control

Traditional mathematical approaches, such as defining and
solving an optimization or control problem, are common
solutions presented for mixed traffic control problems
(Wang et al., 2019; Karimi et al., (2020; Cai et al., 2020; Dai
et al., 2021; Wang et al., 2023b; Lu et al., 2023; Hickert
et al., 2023). For example, Yang and Oguchi (2020) solve an
optimization problem for controlling and coordinating
mixed traffic through an unsignalized intersection, while
work by Zhao et al. (2018) solve an optimization problem
for coordinating mixed traffic at roundabouts. Wu et al.
(2018) introduce an optimal linear controller to stabilize
traffic flow on freeways. However, there are issues with
solving mixed traffic control problems through traditional
approaches as they typically require explicit modeling of the
system’s traffic flow or do not holistically capture the un-
derlying traffic dynamics. As such, recent studies explore
using RL as an alternative, given RL’s ability to handle
mixed traffic’s complex behaviors without making the same
traffic flow/dynamic assumptions.

Recent studies have demonstrated the potential of mixed
traffic control via RL in scenarios such as ring roads, figure-
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eight roads (Wu et al., 2022; Poudel et al., 2024), highway
bottleneck and merge (Vinitsky et al., 2018; Feng et al.,
2021), two-way intersections (Yan and Wu, 2021; Villarreal
et al., 2024), and roundabouts (Jang et al., 2019; Chinchali
et al., 2019). However, these scenarios typically lack real-
world complexity and only involve a limited number of
conflicting vehicles, which contrast to our work where we
ensure both are present.

3. Methodology

The pipeline of our approach is shown in Figure 2. Each RV
entering the control zone employs our method and observes
the traffic condition within the zone. The RV subsequently
encodes the traffic condition into a fixed-length represen-
tation (as shown in Figure 2(a) and elaborated in Section
3.2.2), and then uses it to make a high-level decision (Stop
or Go) at the intersection entrance (as shown in Figure 2(b)
and elaborated in Section 3.2.1).

3.1. Intersection traffic

A standard four-way intersection comprises four moving
directions: eastbound (E), westbound (W), northbound (N),
and southbound (S); and three turning options: left (L), right
(R), and cross (C). As an example, we use E-L and E-C to
denote left-turning traffic and crossing traffic that travel
eastbound, respectively. The complete notation is shown in
Figure 2(a). We further define “conflict” as two moving
directions intersecting each other, for example, E-C and
N-C. In most right-hand driving countries, such as the U.S.
and China, right-turning vehicles are typically not required
to wait for the green light. Hence, it is less important to
coordinate right-turning traffic, which has minimal impact
on intersection traffic flow. To accommodate this obser-
vation, we consider eight traffic streams that may lead to

conflicts: E-L, E-C, W-L, W-C, N-L, N-C, S-L, and S-C;
and we define the conflict-free set C as (S-C, N-C), (W-C,
E-C), (S-L, N-L), (E-L, W-L), (S-C, S-L), (E-C, E-L), (N-C,
N-L), and (W-C, W-L). Conflicts may arise for the pairs of
traffic streams that are not in C.

Our design retains flexibility to accommodate various
traffic rules, including left-hand driving countries, or instances
where both right-turn and left-turn directions require control.
The definition of the eight traffic streams and conflict-free
set allow seamless adherence to a specific traffic regulation. To
demonstrate that, we extend our approach to control 12
moving directions at four-way intersections. The experiments
in Section 4.11 show that the 12-direction policy achieves
similar performance to our baseline policy.

3.2. Decentralized RL for mixed traffic

We formulate mixed traffic control as a partially observable
Markov decision process (POMDP), which consists of a
seven-tuple ðS,A, T ,R,V,O, γÞ, where S is a set of states
ðs2SÞ, A is a set of actions ða2AÞ, T is the transition
probabilities between states T ðs0 j s, aÞ, R is the reward
function ðS ×A→RÞ,V is a set of observations o 2V,O is
the set of partial observations, and γ 2 [0, 1) is a discount
factor. At each time t, when the ith RV enters the control
zone, its action ati is determined based on the current traffic
condition oti, which is a partial observation of the traffic state
sti of the intersection. We present the policy πθ as a neural
network trained using the following loss:

Rtþ1þ γtþ1qθ Otþ1,arg max
a0

qθðOtþ1,a
0Þ

� �
�qθðOt,AtÞ

� �2

,

(1)

where q denotes the output from the value network; θ and θ
respectively represent the value network and the target

Figure 2. The pipeline of our approach. (a) Each RV within the control zone encodes the intersection traffic condition as a fixed-length
representation, including both macroscopic traffic features such as queue length and microscopic traffic features such as vehicle
locations. E,W, N, and S represent east, west, north, and south, respectively; Cmeans crossing and Lmeans left-turning. (b) The encoded
traffic condition is then used by each RV to decide Stop or Go at the intersection entrance to manage mixed traffic.
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network (Hessel et al., 2018). The target network is a pe-
riodic copy of the value network.

3.2.1. Action space. As our focus is exploring mixed traffic
control via RVs over traffic lights, we restrict the action
space of RV to high-level decisions A = {Stop, Go}. An
RV’s action ati 2A determines whether the RV i should enter
the intersection or stop at the intersection entrance to hold its
following vehicles.

The longitudinal acceleration of an RV is computed
using intelligent driver model (IDM) (Treiber et al., 2000)
when the vehicle is outside the control zone. Within the
control zone, if the RV decides Go, it accelerates using the
maximum acceleration at = amax; conversely, if the RV
decides Stop, it decelerates and comes to a halt via at =�v2/
2dfront, where dfront is the distance to the intersection. In the
event of a potential collision, the emergency brake is au-
tomatically engaged via the built-in collision avoidance
mechanism (Krauss, 1998) of the RV, overriding the re-
quested acceleration. Further discussion of the RV is pro-
vided in Section 3.4.

3.2.2. Observation space. To empower an RL policy to
generalize across diverse intersection topologies, we encode
the traffic condition observed by each RV into a fixed-length
representation. The observation for each RV within the
control zone (commencing from 30 m before the inter-
section) has three elements.

· The status of RV: The distance from RV i’s current
position to the intersection, denoted as dti.

· Traffic conditions within the control zone but outside
the intersection: The queue length lt,j and the average
waiting time wt,j of each of the eight traffic moving
directions that are defined in Section 3.1. These fea-
tures quantify the anisotropic congestion levels of an
intersection. In simulation, lt,j is computed as the
number of vehicles before the last RV in the control
zone along direction j, and wt,j is computed as the
average waiting time of RVs in the control zone along
direction j. Note that the values of lt,j and wt,j can be
smaller than the actual values when RV’s penetration
rate is low. In real world, these features can be esti-
mated by each RV through V2V communication
(Cheng et al., 2015). More discussion can be found in
the next section.

· Traffic condition inside the intersection: We design an
occupancy map mt,j for each moving direction. As
depicted in Figure 3 LEFT, we divide the inner lane
along a moving direction into 10 equally-sized seg-
ments. A segment is labeled “occupied” with 1 if a
vehicle’s position is located within it, or labeled “free”
with 0 if otherwise. This information is observed
through the RV’s local perception system (Li et al.,
2023b).

Overall, the observation space of RV i at t is

oti ¼ ÅJ
j hlt, j,wt, jiÅJ

j hmt, jiÅ hdt
ii, (2)

where Å is the concatenation operator and J = 8 is the total
number of traffic moving directions.

3.2.3. Traffic condition estimation. To obtain the traffic
condition outside the intersection (but within the control
zone), we use a decentralized approach: the ith RV stops
inside the control zone, it will compute its waiting time egowt

i

and the queue length of its direction egolti ≈ d
t
i=vlen. Here, d

t
i

represents the distance from the current position of the ith
RV to the intersection, and vlen is the vehicle length plus the
distance between cars, which is set to 5 m. The waiting time
and queue length are propagated to all RVs in the control
zone and aggregated to form the overall traffic condition
along each moving direction.

The traffic condition estimation can be subject to mul-
tiple errors. First, the uniform 5m vehicle length may lead to
inaccurate estimations of the queue length. Second, only
RVs within the control zone broadcast their observations.
Therefore, if most vehicles inside the control zone are HVs,
wt,j and lt,j may be underestimated. Third, the lack of the
contribution of RVs outside the control zone can result in
estimation bias. Lastly, communication issues such as poor
wireless connectivity can deteriorate the estimation results.
Thanks to our reward design and conflict resolution
mechanism, our method is robust against these issues. See
details in Section 4.10.

3.2.4. Conflict-aware reward. To encourage the RV to
consider not only its own efficiency but also the conflicts
within the intersection, we design a conflict-aware reward
function for the RV:

rðst, at, stþ1Þ ¼ λLrL þ pc, (3)

where rL is the local reward, pc is the conflict punishment,
and λL is the coefficient.

The local reward rL is

�wtþ1, j, if at ¼ Stop;
wtþ1, j, otherwise:

�
(4)

wt+1,j is the average waiting time of all vehicles in the jth
direction, which is normalized using wt+1,j/wmax and wmax =
200. pc denotes the punishment for conflicts. If the RV
decides Stop, the local reward is the negative waiting time
�wt+1,j; otherwise, it is positive wt+1,j.

The conflict punishment pc is

�1, if conflict;
0, otherwise:

�
(5)

If the RV’s movement conflicts with other vehicles in the
intersection, it incurs a penalty of �1.

The reward design is inspired by the observation that
waiting time (Zhang et al., 2020; Gregurić et al., 2020) has
been a popular choice in measuring traffic congestion. We
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demonstrate the effectiveness of our reward design in im-
proving intersection traffic through extensive experimen-
tation in Section 4.8.

3.2.5. RL algorithm. We employ Rainbow DQN (Hessel
et al., 2018), a state-of-the-art RL algorithm for discrete
action tasks. It combines six extensions of the original DQN
algorithm (Mnih et al., 2015). We equip it with our reward
function to centrally train all RVs. During execution, each
RV makes independent decisions using the shared policy,
structured as a neural network with three fully connected
(FC) layers and each FC layer contains 512 hidden units
with ReLU as the activation function. Training takes around
48 h using Intel i9-13900K and NVIDIA GeForce RTX
4090. Other hyperparameters are listed in Table 1.

We choose Rainbow DQN for its outstanding perfor-
mance on discrete action tasks. However, we have explored
other RL algorithms for comparison. As shown in
Figure 19, both Rainbow DQN (Hessel et al., 2018) and
PPO (Schulman et al., 2017) yield similar results, while
SAC (Haarnoja et al., 2018) lags slightly. This result shows
that our novelty and contribution are not hinged on a
specific RL algorithm.

3.3. Conflict resolution mechanism

The fundamental cause of intersection congestion and ac-
cidents is the conflicting directions of movement. Although
we penalize RVs for conflicting decisions, our reward
function may not completely eliminate conflicts, that is, Go
decisions of RVs from conflicting directions.

Effective learning can only take place if less conflicts
occur during training: Conflicts will lead to congestion,
which further hinders sampling and training. To avoid
congestion, we incorporate a conflict resolution mechanism
to post-process the RL outputs. If there are no vehicles on
conflicting streams or inside the intersection, and no con-
flicting decisions among the RVs, an ego RV who decides
Go will enter the intersection. If there are vehicles inside the
intersection, particularly on the conflicting streams of the

ego RV, the ego RV is not permitted to enter the intersection.
When multiple RVs on conflicting streams arrive at the
intersection entrance and all decide Go, the RV with the
highest priority score (calculated by averaging waiting time
and queue length) is granted entry, while the others must
wait.

We evaluate the effectiveness of the conflict resolution
mechanism in Section 4.9. The results not only demonstrate
the effectiveness of our approach, but also justify the ne-
cessity of the mechanism.

3.4. Assumptions of robot vehicles

Our method focuses on high-level decisions (Stop/Go) and
requires only basic V2V communication to obtain the
positions and decisions of other RVs. It can be integrated
into autonomous driving software, comprising other mod-
ules such as perception, planning, and control to achieve the
full self-driving capability. Within the pipeline of self-
driving software, various components bear distinct re-
sponsibilities for overall safety (Muhammad et al., 2020;
Shao et al., 2023). High-level modules positioned upstream,
such as perception and decision-making, are not directly
accountable for safety outcomes in most self-driving

Figure 3. LEFT: The occupancy map along the moving direction W-L. Each of the 10 segments is labeled with either free (green dot) or
occupied (red dot). MIDDLE: As learning progresses, the frequency of conflicting decisions decreases and stabilizes at a low level over
all three RV penetration rates. RIGHT: Regardless of the RV penetration rate, the conflict rate (calculated as the number of conflict
decisions divided by the total number of RVs’ decisions) stays low, for example, ∼6% for 60%, < 4% for 80% RVs, and < 3% for 100%
RVs.

Table 1. Hyperparameters of our RL algorithm.

Parameters Value

λL 1
Acceleration 2.6 m/s2

Deceleration �4.5 m/s2

Prioritized replay buffer α 0.5
Replay buffer capacity 50,000
Number of atoms 51
Hidden layers [512, 512, 512]
Discount factor 0.99
Minibatch size 32
Learning rate 0.0005
Control zone radius 30 m
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vehicles to date. Downstream modules like planning and
control (PnC), on the other hand, assume greater respon-
sibility as they need to navigate the vehicle through envi-
ronmental uncertainties and ensure collision-free
trajectories. We prioritize safety by minimizing potential
conflicts within the intersection, thereby inherently en-
hancing the safety of the entire system. Additionally, our
policy is not designed to handle physical collisions as it does
not control the vehicle’s acceleration. When facing such an
event, the PnCmodule should engage emergency braking to
avoid a collision.

However, despite advancements, accidents involving
autonomous vehicles in the U.S. have led to lingering
doubts about their reliability. To navigate the landscape and
tap into the L2/L3 dominated market, our method can serve
as a plugin for L2/L3 driving software, acting as a sug-
gestive component. Human drivers retain responsibility for
the vehicle’s safety, with the option to override suggestions
or assume direct control. As demonstrated in Section 4.5,
our method exhibits robust coordination of mixed traffic
even when some RVs revert to HVs. These features make
our method adaptable and practical across all levels of
vehicle autonomy in mixed traffic.

For low-level control of the RV, we employ the traffic
simulator simulation of urban mobility (SUMO) (Behrisch
et al., 2011). It includes human driving models, configurable
traffic networks and flows, and mechanisms for enforcing
traffic rules, safety rules, and physical constraints. The built-
in collision avoidance mechanism (Krauss, 1998) and human
driving model (Treiber et al., 2000) will act as the down-
stream modules of self-driving software and the human
driver, respectively. These mechanisms and models will
ensure collision-free driving of a vehicle. This assumption
has been widely adopted by previous studies (Yan and Wu,
2021; Wu et al., 2022; Zhang et al., 2023; Cui et al., 2021).

4. Experiments and results

4.1. Mixed traffic

4.1.1. Reconstruction and simulation. In order for RVs to
interact with HVs under real-world traffic conditions, we
need to first reconstruct traffic using actual traffic data and
then pursue high-fidelity simulations. We reconstruct the
intersection traffic using turning count data at each inter-
section provided by the city of Colorado Springs, CO,
USA.1 The turning count data records the number of ve-
hicles moving in a particular direction at the intersection and
is collected via in-road sensors such as infrastructure-
mounted radars. We have in total six intersections’ data
and we label these intersections I, II, III, IV, V, and VI,
respectively. We use intersections I–IV to train the RL
policy. Given the GIS data (traffic data and digital map), we
pursue traffic simulations in SUMO. A directed graph is
used to describe the simulation area: Each edge of the graph
represents a road segment with an ID and a vehicle’s route is
defined by a list of edge IDs.

Vehicles are routed using jtcrouter2 based on the turning
count data. By default, jtcrouter will select edges that are
close to the intersection as the starting and ending edges of a
route. This can result in extremely short routes and affect the
simulation fidelity. To mitigate this issue, we adjust vehicle
routes by proposing more suitable edges for vehicles’ arrival
and departure on the network. Specifically, for traffic
streams on the main road that connects the four intersections
used in training the RL policy, we assign the starting and
ending edges of a vehicle to be the boundary of the main
road. For traffic streams on other roads, the starting edges
are moved to the upstream intersection and the ending edges
are moved to the downstream intersection. The route
planning of a vehicle is determined during traffic
reconstruction.

After re-assigning the starting edge and ending edge of
each route, duplicate traffic counts can occur. For example, a
vehicle traveling through intersection IV from northbound
can also travel through intersections I, II, and III, con-
tributing to the northbound count for all four intersections.
To avoid duplicated counts, we consider the coordination of
traffic flows among adjacent intersections and refine the
number of routes for ensuring matching turning counts in
simulation and actual data.

We use Geoffrey E. Havers Statistic (GEH), a widely
used metric to assess the similarity between simulated traffic
flow and real-world traffic flow:

GEH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðM � CÞ2

M þ C

s
, (6)

where M and C represent the turning counts of simulated
traffic flow and observed traffic flow, respectively. In
transportation engineering, it is generally accepted that
simulated traffic resembles real-world traffic when GEH <5
(Timothy and Marzenna, 2005; El Esawey and Sayed,
2011). We compute the average GEH using all turning
counts at all six intersections. The resulting values are 1.97,
1.49, 1.84, 2.34, 1.87, and 2.19, indicating our simulation’s
high fidelity.

4.1.2. Mixed traffic generation. To create mixed traffic, a
newly spawned vehicle will be randomly assigned to be
either RVor HVaccording to a pre-specified RV penetration
rate. For HV, the longitudinal acceleration is computed
using intelligent driver model (IDM) (Treiber et al., 2000).
For RV, when it is outside the control zone, IDM is used to
determine the longitudinal acceleration; when it is inside the
control zone, the high-level decisions Stop/Go are deter-
mined by the RL policy, while the low-level longitudinal
acceleration is determined by the formulas introduced in
Section 3.2.1.

4.2. Experiment set-up

Our evaluation metric is the average waiting time (Zhang
et al., 2020; Gregurić et al., 2020) of all vehicles. We define
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the waiting time of each vehicle as the total consecutive time
it remains still in the control zone. The average waiting time
for a moving direction is the mean of the waiting times of all
vehicles in that direction, while the average waiting time for
an intersection is the mean of the waiting times of all ve-
hicles at the intersection.

We evaluate our method by comparing it to four
baselines: (1) TL: the traffic signal program deployed in
the city of Colorado Spring, CO; (2) NoTL: no traffic
lights; (3) Yan: the state-of-the-art RL traffic controller
with 100% RV penetration rate (Yan and Wu, 2021);3 and
(4) Yang: the state-of-the-art CAV control method for
unsignalized intersections (Yang and Oguchi, 2020). Our
RVs are trained at intersections I, II, III, and IV. We
evaluate RVs’ performance at all six intersections, in-
cluding the unseen, three-way intersection VI. All inter-
sections are described in Table 2. Furthermore, we evaluate
our method on three manually-generated intersections with
different topologies (3-Lane, 4-Lane, and 7-Lane) and
traffic demands. The details of these scenarios are intro-
duced in Table 4.

4.3. Overall performance

Table 3 shows the main results measured with reduced
average waiting time in percentage at intersections I, II, III,
and IV. We test RV penetration rates from 20% to 100%,
conducting 10 experiments at each rate and reporting the
averaged results. Each experiment lasts 1000 steps (1000 s
in simulation) and is repeated 100 times. The location and
behaviors of HVs are stochastic. The performance of our
method varies at different intersections. With only 20%
RVs, our method can surpass the traffic light control at
intersection II where we perform best. At other intersec-
tions, our method with 60% can outperform the traffic signal
control baseline. An example comparing our approach with
using traffic lights on all moving directions at intersection I
is shown in Figure 4. In the absence of traffic lights and with
100% RVs, we can achieve up to 89% reduction in average
waiting time. These findings show that our approach can
scale to various RV penetration rates while efficiently co-
ordinating mixed traffic.

4.4. Individual intersection performance

In Figure 5, we show the detailed performance of our
method at intersection I. The results include two parts. The
LEFT sub-figure reports the influence of different RV
penetration rates on the average waiting time. The RIGHT
sub-figure displays the zoomed-in version of the LEFT sub-
figure by excluding the NoTL and Yan methods because of
their subpar performance. We can see that the average
waiting time continuously reduces when the RV penetration
rate increases from 20% to 100%. In general, our method
starts to outperform TL and Yang when the RV penetration
rate is 60% or higher.

We further show traffic congestion levels of intersection I
in Figure 4. The congestion level CL is defined as CL = min
(AWT/Threshold, 1.0), where AWT is the average waiting
time of all vehicles in a specific direction, which is nor-
malized by the median value of the average waiting time of
the baseline TL at the intersection, that is, Threshold. The
Threshold is 46.5 for intersection I. As a result, traffic
controlled via our method achieves much lower congestion
levels than TL. In addition, our method can flexibly co-
ordinate conflicting moving directions based on varied
traffic conditions, which is different from TL that employs
fixed-phase coordination.

Figures 6–8 show the detailed performance of our method
at intersections II, III, and IV, respectively. Similar results are
observed: Our method significantly overtakes Yang and TL
with 20%, 70%, and 50% RV penetration rates.

4.5. Blackout

To demonstrate our approach’s robustness, we simulate
blackout events in which all traffic signals are suddenly off.
Figure 9 shows the results of no RVand 50% RVs. In case of
no RV, a gridlock will form at the intersection within 15 min
after the traffic lights are off (starting from the 5th minute). In
contrast, with 50% RVs, no congestion is observed. See
Figure 9 for demonstrations. More results are shown in
Figure 10. The blackouts occur at the 100th step. Without
RVs, the absence of traffic lights leads to significant increases
in average waiting time due to gradually formed congestion.
However, with the presence of 50%RVs, the average waiting
time remains stable during the blackouts. Essentially, our
method enables RVs to act as “self-organized traffic lights,”
which effectively coordinate traffic at the intersection.

We also examine the impact of sudden RV rate drops on
our approach. The sudden drops could occur due to unstable
V2V communication, software failures, humans taking over
the control, and more. The “offline” RVs are simulated
using the IDM model (Treiber et al., 2000). The results are
shown in Figure 11. All drops occur at the 100th step. Our
method has significantly reduced the waiting time compared
to NoTL. The trials using NoTL display exponential in-
creases in average waiting time, indicating the form of
traffic deadlocks. In contrast, at intersection II, our approach
effectively stabilizes the system and avoids congestion by

Table 2. Real-world intersections used in training and testing (see
I, II, III, and IV in Figure 1 and V and VI in Figure 14). Actual
traffic demand is provided. We also list the number of non-empty
lanes since some lanes do not show traveling vehicles.

Intersection
Num. incoming
lanes

Num. non-
empty lanes

Traffic demand
(v/h * lane)

I 21 19 1157
II 19 18 1089
III 18 17 928
IV 16 14 789
V 24 24 987
VI 10 10 1115
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maintaining a low average waiting time. At the other three
intersections, our method stabilizes the system when the RV
penetration rate reaches 90%, with no significant increase in
waiting time. Considering other RV penetration rates, we

observe an overall increase in average waiting time as in-
coming traffic flows continue. We analyze the slope of the
average waiting time curves to identify the rising trend of
congestion levels. As shown in Figure 12, if the slope

Table 3. Reduced average waiting time in percentage at each intersection under different RV penetration rates. Our method outperforms
traffic signals in all cases when the RV penetration rate ≥ 70%. More time is saved with higher RV penetration rates. Compared to
scenarios without traffic lights, our method can achieve up to 89% reduction in average waiting time with 100% RVs.

Reduced average waiting time (%)

Compared to TL (%) Compared to NoTL (%)

Intersection I �15.04 0.34 25.98 32.60 40.75 42.01 89.91
Intersection II 41.78 48.77 48.90 51.84 53.46 52.80 61.46
Intersection III �40.53 �2.83 2.75 13.39 10.60 22.33 66.72
Intersection IV �15.91 8.20 9.70 44.47 52.19 66.63 81.73
RV rate 50 60 70 80 90 100 100

Figure 4. Traffic congestion levels at intersection I under different control mechanisms. Our approach with 80% RVs consistently
achieves lower congestion levels than Yang and TL. Unlike Yang and TL, which control intersection traffic using fixed phases, our
method learns to use adaptive phases in control.

Figure 5. The overall results in average waiting time at intersection I. The RIGHT sub-figure displays zoomed-in version of the LEFT
sub-figure, excluding the NoTL and Yan methods. When the RV penetration rate reaches or exceeds 60%, our method consistently
outperforms the other four baselines.
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approaches 1, there is a higher likelihood of deadlock.
However, in scenarios where our method is deployed, the
rising trend plateaus below 0.4 after 2000 simulation steps
show effective congestion management. In comparison,
NoTL’s AWT trend approaches nearly 0.8, hinting severe
congestion.

4.6. Traffic demands and congestion

We further analyze the relationship of traffic demands and
congestion. The results using intersection I as the testbed are
shown in Figure 13. By increasing the traffic demand from
150 v/h to 300 v/h with no traffic lights and no RVs, we

observe congestion starting to form at 200 v/h, indicated by
a low average speed of all vehicles at the intersection (we
define congestion when average vehicle speed < 1 m/s.

In contrast, with the actual traffic demand 700 v/h,
congestion does not form with just 5% RVs in mixed
traffic controlled by our algorithm. Figure 13 also dem-
onstrates that the minimum RV penetration rate required to
avoid congestion under the real-world traffic demand is 5%.

4.7. Generalization

To evaluate the generalizability of our approach, we first test it
on two previously unseen real-world intersections shown in

Figure 6. The overall results in average waiting time at intersection II. The RIGHT sub-figure displays zoomed-in version of the LEFT
sub-figure, excluding NoTL and Yan. With 20% or more RVs, our method consistently outperforms all other baselines.

Figure 7. The overall results in average waiting time at intersection III. The RIGHT sub-figure displays zoomed-in version of the LEFT
sub-figure, excluding NoTL and Yan, which perform significantly worse than our method. Our method begins to outperform TL and
Yang when the RV penetration rate reaches 60–70% or higher.
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Figure 8. The overall results in average waiting time at intersection IV. The RIGHT sub-figure displays zoomed-in version of the LEFT
sub-figure, excluding NoTL and Yan. Our method with 60% RVs or more outperforms all four baselines.

Figure 9. Comparison between traffic conditions with and without RVs during a blackout event at intersection I. The blackout event
occurs at the 5-min mark. Congestion forms rapidly within 15 min in traffic without RVs. Conversely, traffic regulated with 50% RVs
does not result in congestion.

Figure 10. Blackout experiments. We simulate blackout events (traffic signals off) at intersections I, II, III, and IV (from left to right)
since the 100th step. Without any RV, a gridlock will form at the intersection causing the average waiting time of all vehicles to increase
rapidly. In contrast, with 50% RVs, no gridlock appears and the waiting time of all vehicles remains low and stable.
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Figure 11. Our method ensures stable and uncongested traffic, even when the RV penetration rate abruptly drops. The sub-figures from
left to right correspond to intersections I, II, III, and IV. NoTL displays exponential increases in average waiting time, indicative of
traffic deadlocks.

Figure 12. The slope of average waiting time (AWT) when the RV penetration rate suddenly drops. The sub-figures from left to right
correspond to intersections I, II, III, and IV. The slope of AWTsuccessfully plateaus when our method is activated, indicating effective
congestion management.

Figure 13. LEFT: The solid lines represent no traffic lights and no RVs. The congestion starts to form when the demand is over 200 v/h.
The real-world demand denoted using the dashed line, which is about 700 v/h, does not build congestion because 5% RVs are deployed
in traffic. RIGHT: Analyzing the influence of low RV penetration rates on traffic. As a result, 5% is the minimum to prevent congestion.
For both figures, the study subject is intersection I.
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Figure 14, one of which is a three-way intersection. We
apply our policy directly to the unseen four-way inter-
section without refinement, and it functions well. As
shown in Figure 15(a), our policy can achieve comparable
performance to conventional traffic signal baseline when
the RV penetration rate is 60% or higher. Our policy is also
deployed without refinement at the unseen three-way
intersection, which requires coordination among only
four directions: S-C, S-L, W-L, and N-C. Our policy
adapts to this case by setting the input values of other
directions to zero. Despite never encountering this to-
pology and the corresponding traffic demand, our policy
coordinates traffic well. As shown in Figure 15(b), our
approach outperforms the traffic light baseline when RV
penetration is at 40% or higher. At 90% RV penetration,
our method reduces the average waiting time by ap-
proximately 62.5% compared to using traffic lights. These
results demonstrate the excellent generalizablility of our
approach.

We further investigate the generalizability by testing our
approach at three manually-created intersections, each with
a distinct topology and traffic demand. The intersections
have different numbers of incoming lanes per direction,
allowing us to simulate a wide range of traffic scenarios, as
shown in Figure 16. Traffic flows are generated using the
profiles detailed in Table 4. The results, presented in
Figure 17, demonstrate that our method can effectively
coordinate traffic at these unseen environments as well.
With approximately 70% of RVs, our approach outperforms
traditional traffic light control.

4.8. Evaluation of reward function

Designing effective rewards for controlling mixed traffic at
complex intersections is an open problem to date. Varied
intersection topology, conflicting traffic streams, and the use
of real-world traffic data that can lead to unpredictable and
unstable inflow/outflow all complicate the task. To address
conflicts within intersections and prevent traffic conges-
tions, our insight is to consider the impact of each RV’s
actions on traffic flow in its own direction, while penalizing
conflicting decisions among RVs.

The designed reward should promptly reflect the se-
verity of congestion and traffic conditions at an inter-
section. Figure 18 illustrates the traffic conditions during
NoTL (no traffic lights and 100% HVs) and average
vehicle speed of using our reward and Yan and Wu
(2021)’s reward. The average vehicle speed is used to
indicate congestion severity. We consider an intersection
congested if the average speed is < 1 m/s. In Figure 18,
congestion arises when there are no traffic lights and
100% HVs, resulting in a rapid decrease in the average
speed of all vehicles (orange curve). Our reward (blue
curve) promptly captures this trend, making it an effective
indicator for the learning process. In contrast, the reward
of the state-of-the-art method by Yan and Wu (2021) fails
to do so.

The reward function by Yan and Wu (2021) takes the
format RY an ¼outflowðst,stþ1Þ�collisionðst,stþ1Þ,
where outflowðst, stþ1Þ denotes the number of vehicles
exiting the network from t to t + 1, andcollisionðst, stþ1Þ
is the number of collisions in the network from t to t + 1. We
record this reward during the evaluation of NoTL to analyze
its characteristics. As anticipated, the absence of traffic lights
leads to intersection congestion, evidenced by the average
speed of all vehicles rapidly approaching zero. However,
Yan’s reward fails to capture changes in traffic conditions
promptly. This is due to the outflow of a network being a
delayed indicator; congestion within the intersection does not
prevent previously cleared vehicles from contributing to the
outflow. Consequently, the delayed reward hinders the
learning process, with episodes often terminating due to
congestion before the reward can manifest it. In contrast, our
reward function captures the immediate impact of traffic
conditions by incorporating thewaiting time of traffic streams.
This provides the RL agent with an explicit optimization
objective.

4.9. Evaluation of conflict resolution

Our algorithm and reward design aim to minimize potential
conflicts within the intersection, which not only improves
the effectiveness of RL training, but also implicitly im-
proves the road safety inside the intersection. To evaluate

Figure 14. Two unseen real-world intersections used in our test. LEFT: Intersection V, four-leg. RIGHT: Intersection VI, three-leg.
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the effectiveness of our reward function in avoiding conflict,
we calculate the conflict rate as the ratio of conflicts to the
number of RVs within the control zone. As shown in
Figure 3 MIDDLE, the number of conflicts decreases as
training progresses and stabilizes at a low level. This

indicates that the policy successfully learns to prevent
conflicting movements. In Figure 3 RIGHT, the conflict rate
for 80% RVs converges around 4%, while the conflict rate
for 100% RVs is less than 3% after 500 steps during
evaluation. These results demonstrate that our trained RL
policy successfully learns to avoid conflicts, thereby en-
hancing traffic safety.

To justify the effectiveness and necessity of conflict
resolution mechanism in training, we conduct ablation
studies. As depicted in Figure 19, the absence of the conflict
resolution mechanism (PPO w/o Mech, SAC w/o Mech and
R. DQN w/o Mech) leads to no reduction in waiting time,
indicating ineffective learning. In contrast, with the conflict
resolution mechanism, all RL algorithms demonstrate rapid
learning and convergence.

Figure 15. Overall results in the average waiting time at the intersection Vand VI. Starting from 60–70% RVs, our method outperforms
the traffic lights (TL) baseline at the intersection V. Additionally, our approach starts to outperform the TL baseline when RVs are 40%
or more at the intersection VI. (a) Intersection V. (b) Intersection VI.

Figure 16. Three manually-created intersections in SUMO to further investigate our method’s generalization capability. Each
intersection has different topologies and traffic demands. (a) 3-lane scenario. (b) 4-lane scenario. (c) 7-lane scenario.

Table 4. The traffic demand profiles of the manually-generated
intersections.

Scenario Num. incoming lanes Traffic demand (v/h * lane)

3-Lane 12 550
4-Lane 16 412
7-Lane 28 235
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4.10. Robustness in potential real-world
deployment

Our method is designed for decentralized execution. As we
discussed in Section 3.2.2, the input to our policy requires
both V2V information and local perception. The inference
process is described in Alg. 1.

Our method can be potentially applied to real-world RVs
which are equipped with V2V capabilities and self-driving
software. However, conducting real-world experiments for
mixed traffic control can be expensive. Therefore, we
validate our approach through simulation. In particular,
whether the decision-making of the RV described in Alg. 1
is robust to traffic conditions estimated from real-world
observations. As discussed in Section 3.2.2, RL

Figure 17. From left to right, our results at manually-generated 3-lane, 4-lane, and 7-lane intersections shown in Figure 16. Our method
successfully regulates traffic in these unseen intersections without fine-tuning.

Figure 18. When congestion occurs during the NoTL setup, the
average speed within the intersection decreases to nearly zero
(orange curve). Our reward can promptly respond to congestion,
indicated by the decreasing negative reward curve in the LEFT
sub-figure. In contrast, the reward from Yan and Wu (2021)
incorrectly increases as congestion worsens, as shown in the
RIGHT sub-figure.

Figure 19. Visualization of the cumulative waiting time per
rollout when training various RL algorithms, such as SAC, PPO,
R. DQN (Rainbow DQN), R. DQN w/o Mech (Rainbow DQN
without conflict resolution mechanism), SAC w/o Mech, and PPO
w/o Mech. PPO and Rainbow DQN demonstrate similar
convergence. However, without our conflict resolution
mechanism (Mech), all algorithms fail to learn, indicated by a high
waiting time after 500 epochs of training.
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observations are estimated from local perception and V2V
communication using technologies such as LTE, WiMax, or
Bluetooth. Due to the variability in connectivity quality and
range, multi-hop communication and potential packet errors
or losses are inevitable (Vegni and Little, 2010). Hence, it is
crucial to assess our method under different communication
conditions. To achieve this, we simulate two types of
connectivity protocols:

· Long-range connectivity (e.g., LTE and WiMax): In
this protocol, vehicles within 150 m can directly
communicate and exchange information with each other
using a single hop, without the need for intermediary
nodes. See Figure 20 LEFT.

· Short-range connectivity (e.g., Bluetooth): This pro-
tocol uses short-range communication techniques, al-
lowing vehicles to communicate around an intersection
with up to three hops, each spanning up to 50 m. The
communication process involves four steps: (1) Vehicles in
the same direction form clusters, with the leading vehicle
designated as themaster node; (2) each vehicle transmits its
local information to the master node of its cluster; (3)
master nodes exchange gathered information with master
nodes of other clusters; and (4) the master node distributes
the information from other directions back to the slave
nodes within its cluster. See Figure 20 RIGHT.

Simulating these two distinct connectivity protocols
allows us to evaluate the robustness and efficiency of our
method. The long-range connectivity ensures minimal
latency through direct communication, while the short-
range connectivity assesses performance in a more
complex, multi-hop, high-latency communication envi-
ronment. As the message to be shared among vehicles is
brief and can be swiftly exchanged, we assume that the
communication process between vehicles is rapid, with
all communication completed within 1 s, including both
one-hop and multi-hop connectivity. This aligns with the
fact that our proposed policy operates at 1 Hz.

In addition to connectivity range, the reliability of
connectivity is another critical factor in real-world
wireless communication. For example, the IEEE
802.11a standard specifies a maximum tolerable package
error rate (PER) of 10% (IEEE Standards Association,
1999). Despite the integration of sophisticated network
protocols equipped with various error mitigation mech-
anisms, it is essential to evaluate the impact of connec-
tivity errors on our system. Therefore, we conduct
multiple experiments to simulate various package error
rates, ranging from 1% to 20%. In these simulations, we
assume that each V2V connection operates indepen-
dently, with an equal chance of encountering connectivity
errors. If a connectivity error occurs, the shared infor-
mation becomes inaccessible to the affected receivers. As
a result, the probability of successfully receiving shared
information can be calculated as Pinfo = (1 �PER)#hops,

where PER denotes the package error rate, and #hops
denotes the number of hops on the connectivity link. To
examine the impact of different connectivity conditions
on our estimated traffic, we calculate the relative esti-
mation error (%) as follows:

estimation error ¼ actual value� estimated value

actual value

����
���� × 100%:

This calculation is performed for both estimated queue length
and waiting time. The estimation is obtained from the infor-
mation received from the V2V communication, while the
actual value is determined using the ground-truth traffic
condition. Based on the relative estimation error visualized in
Figures 21(a) and (b), we observe that the error increases with
#hops and packet error rate (PER). This leads to increased
observation uncertainty for the policy during experiments. For
instance, when PER reaches 20% in short-range connectivity,
the estimation error of queue length exceeds 20%. This sig-
nificant error makes decentralized traffic coordination more
challenging. However, as shown in Figure 22, our method
demonstrates robustness to varying V2V conditions, including
multi-hop communication (one-hop and three-hop) and dif-
ferent PER assumptions (1%, 5%, 10%, 15%, and 20%).
Remarkably, our method maintains robust performance even
under extreme conditions, such as three-hops and 20% PER.
When the probability of connectivity is low, such as one-hop
communication with 1% PER, our method achieves perfor-
mance similar to the RL policy with precise observation.
However, as observation uncertainty increases, the coordi-
nation performance diminishes but is still acceptable. These
experiments highlight the robustness of our method and
showcase its potential for real-world deployment.

4.11. Extension to right-turn traffic

Our simulation is constructed using Geographic Informa-
tion System (GIS) data sourced from the U.S., a country
with right-hand traffic norms. However, traffic regulations

Figure 20. Two distinct real-world deployment setups, long-range
connectivity and short-range connectivity. LEFT: Long-range
connectivity enables seamless broadcasting of vehicle
information, accessible to all nearby vehicles around the
intersection. RIGHT: With short-range connectivity, messages
necessitate up to three hops before reaching their destinations.
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vary across nations; for instance, in left-hand traffic
countries, right-turn traffic requires control. Our method
maintains adaptability to accommodate diverse scenarios
with varying traffic rules. By adjusting traffic streams and
conflict-free movements, our methods can seamlessly ad-
here to specific requirements, for example, incorporating
and regulating the right-turn traffic.

To showcase this adaptability, we have retrained the
policy to include right turns, with 70% RVs and tested it at
intersection V. This particular intersection does not have a
right-turn ramp, meaning that vehicles from all four in-
coming directions can enter the intersection. As indicated in
Table 5, we report the average waiting time of all vehicles
across all 12 moving directions. The new policy, now

accommodating right turns, achieves performance compa-
rable to our original policy. Notably, the average waiting
time of the right-turn traffic is significantly shorter com-
pared to other directions, which also demonstrates that the
right-turn traffic has minimal impact within the traffic
scenarios analyzed in this study. This experiment illustrates
the flexibility of our method and its potential applicability
across various traffic rules.

5. Discussion

While our approach demonstrates promising results in
large-scale mixed traffic control at complex intersections,
we acknowledge several inherent limitations that are worth
further exploration.

First, our current learning framework lacks a hierar-
chical structure, which could be supplemented by low-
level sub-policies such as longitudinal and lateral de/
accelerations, as well as lane changes. This deficiency
can hinder the granularity and responsiveness of traffic
regulation, potentially compromising the efficiency and
safety of both RVs and HVs. For example, when the
penetration rate of RVs is low, the absence of lane change
functionality in RVs can result in congestion and deadlock,
as HVs can simply bypass RV regulations by changing
lanes frequently. To address this issue, RVs should be able
to change lanes or decelerate to influence nearby HVs,
encouraging them to comply with RV’s regulations for
more efficient traffic. Additionally, RVs should actively
regulate traffic flow within intersections, rather than
simply acting as mobile traffic lights. While this concept
offers greater regulation potential, it also presents sig-
nificant challenges in complex intersectional traffic
scenarios.

Second, our method employs a relatively rigid conflict
resolution mechanism, in terms of a pre-defined if-else rule
that restricts vehicle movement at intersections. Though the
constrained exploration space is beneficial for training ef-
ficiency and safety (Alshiekh et al., 2018), it is still possible

Figure 21. The relative error of traffic condition estimation under
different V2V communication protocols and PER (package
error rate) levels. (a) The estimation error of one-hop V2V
communication. (b) The estimation error of three-hop V2V
communication.

Figure 22. From left to right, evaluation of our method in simulated V2V communication experiments with 60% RVs at intersections I,
II, III, and IV. The results demonstrate that our method can effectively address the communication uncertainty arising from multi-hop
communication and low-quality connection.
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that the optimal solution lies beyond the exploration
boundaries set by this mechanism. Therefore, future ex-
ploration could consider relaxing these constraints, for
example using real-world demonstration data (Leung et al.,
2023), which could improve overall traffic efficiency
without compromising safety.

Third, our traffic status encoder is currently designed for
intersections with a maximum of four ways, and it must be
expanded to accommodate other topologies, such as multi-
way intersections and roundabouts. Addressing this limi-
tation is crucial to broaden the usability and adaptability of
the proposed method. One possible solution is to use a graph
convolutional network (GCN) to model the intersection.
However, existing GCN methods like Bai et al. (2020) only
model the topology of the intersection and cannot capture
the complex geometric details inside the intersection that is
necessary for real-world intersection traffic regulation.

Fourth, we use IDM (Treiber et al., 2000) to simulate
interactions between RVs and HVs. However, IDM can be
replaced by other advanced methods, such as learning-based
simulations for autonomous driving and traffic (Guo et al.,
2024), to capture the accurate interaction between HVs and
RVs. Nevertheless, these learning-based models may some-
times be unstable, leading to erroneous outputs that could
negatively impact the RL agent. Additionally, most of the
traffic data used in these methods are based on HVs’ regular
trajectories in stable traffic, lacking the active responses of
HVs to mixed traffic conditions. Therefore, an important next
step would be to collect real-world traffic data in complex
intersections with dynamic and rich HV–RV interaction.

Finally, we currently rely solely on RV information within
the control zone to estimate traffic conditions, which may
lead to significant errors. Although HVs in mixed traffic
cannot be directly controlled like RVs, they can still provide
valuable traffic information. For example, by utilizing on-
board GPS or Google Map APIs, HVs can measure their ego
queue lengths and waiting times in the direction they are
moving. This data can enhance the accuracy of traffic con-
dition estimation, resulting in improved traffic regulation
performance within our RL framework. However, it also
brings additional challenges, including privacy concerns and
the need for standardized communication protocols. These
challenges can be addressed by implementing privacy-
preserving crowdsourcing techniques (Wang et al., 2023a).

6. Conclusion

We propose a decentralized RL approach for the control
and coordination of mixed traffic at real-world and un-
signalized intersections. Our method tackles the most

intricate mixed traffic intersection scenarios when com-
pared to existing literature, encompassing diverse inter-
section capacities, topologies, and fluctuating traffic
demands. Our approach encompasses numerous inno-
vative designs tailored for mixed traffic control. To ad-
dress the diverse range of road topologies and traffic
demands, we introduce a generic representation for en-
coding intersection traffic conditions, ensuring enhanced
generalizability. To optimize traffic efficiency and min-
imize conflicting movements, we devise a conflict-aware
reward function specifically for coordinating large-scale
mixed traffic at intersections. This function not only
serves as a timely incentive for the RL agent but also
boosts the training performance. We also introduce a
conflict resolution mechanism aimed at preventing con-
flicts as well as improving training efficiency. Lastly, we
provide a high-fidelity traffic simulation reconstructed
using real traffic data for robust training and testing.

Our method is the first to control mixed traffic under real-
world traffic conditions at complex intersections. Various
experiments are conducted to show the effectiveness, ro-
bustness, generalizablility, and adaptability of our approach.
Detailed analyses are also pursued to justify the design of
the components of our method. Our method can serve as an
inspiration for mixed traffic control via model-free RL at
large-scale and complex scenarios, paving the way for next-
generation traffic control strategies.
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Table 5. Result of right-turning experiments. We report the average waiting time of all vehicles along each moving direction.

Directions S-C S-L S-R W-C W-L W-R N-C N-L N-R E-C E-L E-R All

Right-turn-enabled 27.4 12.0 1.79 20.9 11.0 0.23 31.7 14.0 0.77 19.8 9.67 0.67 18.3
Baseline 15.4 18.7 N/A 16.6 18.8 N/A 21.1 16.8 N/A 26.8 15.8 N/A 19.9
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3. To apply this approach, we extend the network input to the
maximum number of incoming lanes to accommodate a real-
world intersection.
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