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Large-scale Mixed Traffic Control Using Dynamic
Vehicle Routing and Privacy-Preserving

Crowdsourcing
Dawei Wang, Weizi Li, Jia Pan

Abstract—Controlling and coordinating urban traffic flow
through robot vehicles is emerging as a novel transportation
paradigm for the future. While this approach garners growing at-
tention from researchers and practitioners, effectively managing
and coordinating large-scale mixed traffic remains a challenge.
We introduce an effective framework for large-scale mixed
traffic control via privacy-preserving crowdsourcing and dynamic
vehicle routing. Our framework consists of three modules: a
privacy-protecting crowdsensing method, a graph propagation-
based traffic forecasting method, and a privacy-preserving route
selection mechanism. We evaluate our framework using a real-
world road network. The results show that our framework
accurately forecasts traffic flow, efficiently mitigates network-
wide RV shortage issue, and coordinates large-scale mixed traffic.
Compared to other baseline methods, our framework not only
reduces the RV shortage issue up to 69.4% but also reduces the
average waiting time of all vehicles in the network up to 27%.

Index Terms—Mixed Traffic Control, Multi-agent Reinforce-
ment Learning, Privacy, Crowdsourcing, Future Mobility

I. INTRODUCTION

W ITH the rapid advancement of autonomous driving
technology, an escalating number of vehicles are now

being equipped with autonomy capabilities and tested in real-
world traffic. Anticipating the decades ahead, the gradual shift
towards full transportation autonomy will usher in an era of
mixed traffic, where both human-driven vehicles (HVs) and
robot vehicles (RVs) coexist, equipped with diverse levels
of autonomous driving features. Consequently, an emerging
concern for our transportation systems is the effective man-
agement and coordination of mixed traffic.

Despite the challenges posed by the diverse and suboptimal
nature of human drivers in mixed traffic, recent research has
demonstrated that reinforcement learning (RL) can serve as
a promising approach to acquire adaptive behaviors for RVs,
with the primary goal of optimizing overall traffic efficiency
by influencing nearby HVs [1], [2], [3], [4], [5]. In particu-
lar, researchers have shown that employing RVs as the sole
control mechanism in mixed traffic can outperform traditional
traffic lights at unsignalized intersections [2], [3]. However,
existing methods are predominantly tailored for simple road
networks (including single intersections) and are unsuitable
for managing large-scale mixed traffic. To be specific, these
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traffic control methods necessitate a minimum RV presence
to realize the advantages of mixed traffic in enhancing overall
traffic efficiency. Consequently, one challenge in large-scale
mixed traffic control within complex road networks is the
need to maintain a delicate equilibrium in RV penetration
rates, which fluctuate due to traffic dynamics and unpredictable
behaviors of HVs. Failing to maintain this balance may lead
to congestion or even network-wide gridlock. As of now, there
lacks of an RV routing algorithm to guarantee such balanced
RV rates across road segments of a road network.

Another challenge that hinders the control of large-scale
mixed traffic is the perception of individual robot vehicles
through on-board sensors such as GPS, radars, and LiDARs.
They are limited in obtaining a global view of the road
network and the associated traffic conditions. One approach to
mitigate this issue is to utilize Internet of Vehicles (IoV). IoV
constitutes an interactive network where vehicles can exchange
information with each other and with the infrastructure. This
development holds the promise of enabling RVs to leverage not
only local perception but also global traffic information about
a road network. In our context, one way to utilize IoV is to
allow a group of RVs form a crowdsourcing network to jointly
collect traffic information by using a central server to route
the RVs according to their destinations and network traffic
conditions. While this approach is straightforward, privacy
concerns arise because information, such as destinations and
planned routes, must be shared with the central server, along
with other data collected by neighboring RVs about HVs. This
raises two crucial aspects of privacy preservation in large-scale
traffic coordination: perception—–how to collect traffic data
while preserving the privacy of other vehicles, and routing—–
how to route RVs while preserving their private information,
such as trajectories.

While some methods [6], [7] have been proposed to protect
user privacy in the context of IoV and autonomous driving, to
the best of our knowledge, there has been no study showing the
practicality of managing and coordinating mixed traffic across
extensive real-world road networks. This stands as a pivotal
evaluation of whether autonomous driving can make a positive
impact on urban environments. In this project, we propose
an effective method for large-scale mixed traffic control.
Our method involves a novel vehicle routing algorithm that
incorporates a privacy-preserving mechanism for gathering
network-wide traffic information. Our contributions include:

• A novel framework for large-scale mixed traffic control
and coordination;
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• A privacy-protecting crowdsensing method for collecting
traffic conditions via RVs;

• A graph propagation-based method for modeling and
predicting traffic flow; and

• A privacy-preserving crowdsourcing mechanism for route
selection of RVs while balancing RV penetration rates
across road segments of a road network.

We evaluate the proposed framework using simulations
constructed in the city of Colorado Springs, CO, USA. The
results show that our method can effectively control and coor-
dinate large-scale mixed traffic on road networks even without
the presence of traffic lights, and achieve better performance
compared to baseline methods as the RV penetration rate
increases. For example, our method can reduce the average RV
shortage index by 69.4% compared to a baseline method [3].
As a result of alleviating the RV shortage situation, traffic
efficiency is significantly improved, for example, compared to
Wang et al. [3], our method can reduce the average waiting
time of vehicles by 27% under 50% RV penetration rate.

II. RELATED WORK

We provide a brief overview of related studies pertaining to
various components of our framework.

A. Traffic State Prediction and Estimation

Li et al. [8] categorize traffic state prediction methods
into two groups: knowledge-driven approaches and data-driven
approaches. As an example of knowledge-driven approach,
Cascetta et al. [9] propose a method employing queuing
theory and behavior simulation. In recent years, data-driven
methods have received considerable attention. For example,
Liu et al. [10] introduce an Auto-Regressive Integrated Moving
Average (ARIMA) model for modeling and predicting traffic
data. Lippi et al. [11] propose Seasonal Auto-Regressive
Integrated Moving Average (SARIMA) model coupled with
Kalman filter. Ma et al. [12] introduce a CNN-based method
that converts traffic data to images and predict large-scale
traffic states. Li et al. [8] introduce a diffusion convolutional
recurrent network that leverages directed graphs for traffic flow
forecasting. Lin et al. [13], [14], [15] propose a series of traffic
state prediction algorithms that are data-efficient, and multi-
step and network-wide. Li et al. [16], [17] develop methods to
estimate city-scale traffic states using sparse GPS data. While
significant progress has been made, existing methods are not
designed for mixed traffic, especially in predicting short-term
RV penetration rate across the road network.

B. Vehicle Route Planning

Ge et al. [18] present a system for recommending routes
that uses a travel distance function to extract energy-efficient
patterns and evaluate candidate sequences. Shang et al. [19]
propose a novel method for planning collective travel that
finds the lowest cost route connecting multiple query sources.
Li et al. [20] introduce a query method for trip planning to
determine the best possible route. Zhang et al. [21] develope
a framework for route planning that considers multiple ob-
jectives such as travel distance, travel time, cost, and traveler

preferences. Since mixed traffic control is a new development,
a method is required to consider RV penetration rates, as
they can significantly affect traffic efficiency in mixed traffic
control [3].

C. Mixed Traffic Control at Intersections
Traffic signals are the primary source of controlling traffic

at intersections. However, RVs have the potential to control
traffic without the need for traffic signals. Sharon et al. [22]
introduce the Hybrid Autonomous Intersection Management
protocol, which uses sensing data from infrastructure to man-
age traffic. Yang et al. [23] predict vehicle delay and find the
optimal control action for connected vehicles, improving the
performance of the traffic system. Wu et al. use reinforcement
learning [24], [1] for mixed traffic control. Yan et al. [2] also
leverages reinforcement learning to control mixed traffic at
intersections. Recently, Wang et al. [3] leverages reinforcement
learning to control and coordinate mixed traffic at complex
and unsignalized intersections, which we adopt as the inter-
sectional traffic control mechanism for this project.

D. Privacy Preservation
The development of Internet of Vehicles (IoV) has led to

advancements in intelligent transportation systems, improving
road safety, traffic efficiency, and driving experiences [25].
However, the increased connectivity and data exchange among
vehicles, infrastructure, and other devices have raised con-
cerns about privacy preservation. To address the challenge,
various techniques have been proposed with some focus on
cryptographic schemes and anonymous authentication mech-
anisms [6], while others explore the potential of machine
learning and blockchain for privacy preservation in IoV [7].

III. METHODOLOGY

We first provide an overview of our approach. We the
describe the reinforcement learning-based intersectional traffic
coordination method [3] as the preliminaries of our frame-
work. Next, we introduce our privacy-protecting crowdsensing
mechanism and present the graph propagation-based traffic
forecasting algorithm. Lastly, we detail our route selecting
method of RVs.

A. Framework Overview
Our framework consists of three modules: 1) a privacy-

protecting crowdsensing method, 2) a graph propagation-based
traffic forecasting method, and 3) a privacy-preserving route
selection mechanism. Fig. 1 illustrates the pipeline of our
system. First, the crowdsensing method is adopted by each
RV to collect local traffic conditions, which are then used to
construct the traffic flow of the entire road network. Next, the
constructed traffic flow is fed into the graph propagation-based
traffic forecasting method [8] to produce a 100-step forecast
for detecting the RV shortage road segments. In the following,
the route selection mechanism balances RV rates on road
segments via designated RVs, which traverse road segments
experiencing RV shortage, to their destinations. Finally, RVs
employ their reinforcement learning-based control policy to
coordinate traffic at unsignalized intersections [3].
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Fig. 1: An overview of our framework. (1) The traffic crowdsensing
system collects data through RVs and constructs traffic flow of
the entire road network. (2) The traffic forecasting method predicts
potential traffic conditions. (3) The predicted traffic is adopted by the
route selection mechanism to assign RVs to balance RV rates across
the road network. When entering an intersection, RVs will employ
an RL-based control policy to coordinate traffic and enhance overall
traffic efficiency.

B. Intersectional Traffic Coordination

Intersection

Shared RL Policy

GO

GO

STOP

STOP

Coordination Zone

GO

STOP

Fig. 2: The RL-based intersectional traffic coordination method [3].
The intersection’s traffic conditions are encoded, providing input to
the RL policy used by the RV to determine Go/Stop upon reaching
the intersection.

We formulate intersectional traffic coordination as partially
observable Markov decision process (POMDP), which can be
solved by an reinforcement learning (RL) policy πθ repre-
sented by a deep neural network [3].

The action space of πθ is discrete and contains the decisions
of whether an RV i shall or shall not pass the entrance line of
an intersection:

ait ∈ A = {Stop,Go}. (1)

The observation space contains the status of the ego RV dit,
which denotes the distance between the ego RV i and the
entrance line of the intersection at time t, traffic condition
inside the intersection mj

t , which is an occupancy map for
each moving direction j at time t, and traffic condition outside
the intersection, which includes the queue length ljt and the
average waiting time wj

t of each queue j at time t:

oit = ⊕J
j ⟨l

j
t , w

j
t ⟩ ⊕J

j ⟨m
j
t ⟩ ⊕ ⟨dit⟩, (2)

where⊕ is the concatenation operator and J = 8 is the number
of traffic moving directions at the intersection shown in Fig. 2.
The reward function is defined as

r(st, at, st+1) = λLrL + pc, (3)

where rL is the local reward and pc is the conflict punishment.
The local reward rL is the following:{

−wt+1,j , if at = Stop;
wt+1,j , otherwise.

(4)

wt+1,j is the average waiting time of all vehicles in the jth
direction, which is normalized to [0, 1]. If the RV opts to
Stop, it incurs a negative waiting time −wt+1,j ; otherwise,
it is positive wt+1,j . pc is the penalty term where an RV’s
movement is in conflict with other vehicles at the intersection.

Once entering the coordination zone (see Fig. 2), RVs are
controlled by the RL-based intersectional traffic coordination
method. The traffic condition is encoded into a fixed-length
representation, which serves as the observation space. This
representation is then used as input to the RL policy, which
determines whether the RV should Go or Stop. Lastly, a
coordination mechanism that ensures conflict-free movements
within the intersection is also implemented [3]. For details on
the intersectional traffic control and coordination mechanism,
we refer interested readers to Wang et al. [3].

C. Privacy-protecting Crowdsensing

To obtain real-time traffic information, we adopt the sensing
capability of RVs. However, directly sharing local observa-
tions, including surrounding vehicle types and trajectories
among all RVs, subjects to privacy breach. To protect the
privacy of perceived vehicles, RVs will only share the observed
RV penetration rates. Other sensing data will be processed and
stored locally. By doing this, the privacy of other vehicles
gets protected during the data collection process. In our
experiments, vehicles within the 30 m range of each RV are
observed. Each RV records the total number of surrounding
vehicles along with their type (HV or RV). The computed RV
penetration rate is sent to the central coordinator and shared
among all RVs.

Upon receiving the traffic information as a result of crowd-
sensing, the central coordinator will compute the RV penetra-
tion rate of an entire road segment (Pe) and estimate the total
number of vehicles on the road segment (Ne) as follows:

Pe =

∑
v∈RVe

(Pv)

|RVe|
, Ne =

|RVe|
Pe

, (5)
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where all v ∈ RVe makes the set of RVs on e, Pv denotes
the observed RV penetration rate reported by v, and |RVe|
indicates the total number of RVs in the set of RVe. By sending
only decentralized data, such as the RV penetration rate, to the
central coordinator, the privacy of the local traffic information
is preserved.

D. Graph Propagation-Based Traffic Flow Forecasting

Fig. 3: Graph modeling a road network for traffic forecasting. (a)
The original road network simulated in SUMO [26]. (b) The graph
model of the road network.

1) Problem Formulation: The goal of traffic forecasting is
to predict not only traffic flow but also the RV penetration rate
based on the observed traffic flow on a given road network.
We represent the road network as a directed graph:

G = (E,C,W ), (6)

where E is the set of road segments represented by the nodes
of the graph, C is a set of connections between each road
segment represented by the edges of the graph, and W is
the adjacency matrix representing the connectivity between
each pair of nodes. The observed traffic flow is denoted as
X ∈ R|E|×F , where |E| is the number of nodes in the graph,
and F represents features of mixed traffic, including the RV
penetration rate of each road segment. The forecasting goal
is to learn a function f that predicts future traffic flow Xt+1

given the current traffic flow Xt and the graph G:

f(Xt;G) = Xt+1. (7)

2) Graph Propagation Algorithm: By representing the road
network as a directed graph, each road segment has at least
one predecessor. An example is shown in Fig. 3. Therefore,
we can define graph propagation as:

Xt+1[e] =
∑

p∈e.pred

(αp ·Xt[p]) + c. (8)

Here Xt+1[e] is the traffic flow of the road segment e at
time t+1. Its value after graph propagation can be computed
as a linear combination of Xt[p] and the traffic flow of e’s
predecessor {e.pred}. The coefficient and the intercept term of
the linear combination are represented by α and c, respectively.
To estimate the parameters of the linear model, we use data
collected from our simulation. We minimize the residual sum
of squares between the ground truth (simulation data) and the
prediction of the linear approximation. Multi-step forecasting
is achieved by consecutively running the forecasting model.

E. Privacy-preserving Route Selection

In order to balance the RV penetration rates across the road
network so that RVs can be leveraged to smooth traffic, we
need to route RVs from the road segments that have high RV
rate to the road segments that have low RV rate. We propose a
novel algorithm to achieve this balancing task by incorporating
RV rates at all intersections for optimal route selection of RVs.
We aim to balance RV rates in all moving directions of an
intersection. In addition, we ensure the privacy of the route
selection process. Sensitive information such as the trajectory
of an RV is kept private.

Central Coordinator

Network 
Statuslocal RV rates

Traffic
Crowdsensing

Identifying
RV Shortage

Comparing 
Route Scores

Robot Vehicle

reroute tasks scores route
assignment

Computing
Route Scores

Changing
Route

Fig. 4: The pipeline of the privacy-preserving route selection
mechanism. The central coordinator first collects local RV rates
via crowdsensing, then identifies road segments experiencing RV
shortage and informs RVs. When RVs receive a reroute task, they
will a score associated with each new route, which is sent back to
the central coordinator for comparison and route assignment.

1) Overview: Fig. 4 illustrates our privacy-preserving route
selection mechanism. The upper part of the figure depicts the
data processing undertaken by the central coordinator, while
the lower part represents the execution process of individual
RVs. The arrows represent communications between RVs and
the central coordinator. First, RVs report their observed local
RV rates to the central coordinator via crowdsensing. Then, the
central coordinator constructs traffic of the entire road network
and identifies road segments that experience RV shortage.
Afterwards, the central coordinator calculates the required
number of vehicles for mitigating the shortage and re-route
RVs for rate balancing. When an RV receives the re-routing
task from the central coordinator, it will calculate a score of
each new route and send it back to the central coordinator.
The scores will be compared by the central coordinator and a
new route will be designated for the RV.

Our method is designed to be privacy-preserving. The
crowdsensing process ensures the local observation made by
the RV is secured, and the route selection process ensures the
trajectory (including the destination) of an RV is private. No
third party has the access to private information throughout
the two processes.

2) RV Shortage Detection: The central coordinator uses
estimated traffic condition to identify road segments with RV
shortage. A road segment e is marked having the shortage
issue if the RV rate is below a given threshold:

Pe < Ptarget − λ,



JOURNAL OF LATEX CLASS FILES 5

Fig. 5: The test area in the city of Colorado Springs, CO, USA. (a)
Typical traffic at 5:30PM acoording to Google Map is shown. (b) The
simplified map with all secondary roads removed. Locations circled
in red are assigned to be the low-RV-rate spawn points.

where Pe is the RV rate of road segment e, Ptarget is the target
RV rate we want to achieve on all road segments of the road
network, and λ is a hyperparameter representing the shortage
threshold and set to 5% empirically. Thus, the desired number
of vehicles to be sent to the shortage road segment e is

De = ⌈(Ptarget − Pe) ∗Ne⌉, (9)

where Ne is the number of vehicles on e. If the RV rate of the
predecessor road segment epre, i.e., Ppre, is greater than Ptarget,
a re-routing task containing e will be sent to RVs on epre.

3) Route Planning: Once a re-routing task is received,
the RV will plan the shortest route to its destination via the
requested RV shortage road segment. A corresponding score
is computed for the new route:

S(new route) = DIS(shortage road)
+ LEN(new route)
− LEN(curr route),

(10)

where DIS(shortage road) is the distance from the RV’s cur-
rent location to the requested road segment. LEN(new route)−
LEN(curr route) is the difference in length between the new
route and the current route of the RV.

One issue is that a road segment may have more than one
successor (see Fig. 3b for an example). This can result in RVs
on such road segments receiving multiple re-routing tasks. In
this case, the RV will compare the scores of all tasks and
keep the task that has the minimum score. For tasks that have
scores greater than the minimum score, their scores will be
set to∞ to prevent them from being selected. Afterwards, the
scores will be sent to the central coordinator for re-routing task
assignment. The entire process is described in Algorithm 1.

4) Route Selection: Once the central coordinator receives
responses from the vehicles on epre, it organizes the responses
into responses sete, selects the lowest score based on the
desired vehicle number De, and sends the decisions back to the
corresponding RV for re-routing. The process is summarized
in Algorithm 2, where SORTBYSCORE denotes the function of
sorting the responses set by the route scores in an ascending
order, and SEND(a, b) presents the process of sending message
b to the vehicle a.

Algorithm 1 Route Planning of RVs
1: Input: a set of reroute tasks

smallest ID, smallest score ← −1, ∞
2: for task ∈ reroute tasks do
3: new route ← shortest route via task.shortage road
4: response.score ← S(new route)
5: response.ID, response.veh id ← task.id, task.veh id
6: if smallest score ≥ response.score then
7: smallest score ← response.score
8: smallest ID ← response.id
9: end if

10: end for
11: for response ∈ responses do
12: if response.ID ̸= smallest ID then
13: response.score ← ∞
14: end if
15: end for
16: Return: responses with scores (to be sent to the central

coordinator)

Algorithm 2 Route Selection via Central Coordinator
1: Input: responses sete for shortage road segment e
2: SORTBYSCORE(responses sete)
3: for n ∈ [1, 2, 3, ..., De] do
4: SEND(responses sete[n].veh id, ‘change route’),
5: end for

IV. EXPERIMENTS AND RESULTS

We begin by introducing our large-scale traffic simulation
used in evaluation. We then present the results of the proposed
traffic forecasting algorithm, followed by the evaluation results
of the route selection mechanism. Lastly, we demonstrate
large-scale mixed traffic controlled and coordinated by our
approach.

A. Large-scale Traffic Simulation

To simulate large-scale mixed traffic, we use the micro-
scopic traffic simulator SUMO [26]. The study area is the
city of Colorado Springs, CO, USA, shown in Fig. 5a. After
removing all secondary roads (see Fig. 5b), we select vehicle
starting and ending edges at the border of the test area. Using
SUMO’s jtrrouter1, we generate the shortest routes for each
pair of starting and ending edges, and automatically generate
traffic flows in-between. It is worth noting that since the
traffic flow is not reconstructed using real-world traffic data,
the mixed traffic pattern and performance are not comparable
to the results reported in the previous mixed traffic control
study [3]. In our test scenario, all intersections are either three-
way or four-way. In addition, only left turn, right turn, and
cross are allowed at the intersections. U-turn is prohibited for
all vehicles.

In order to simulate representative traffic patterns, we design
three test scenarios based on the typical traffic conditions at
three time periods of a day found in Google Map2: 10AM

1https://sumo.dlr.de/docs/jtrrouter.html
2https://www.google.com/maps
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(morning rush hour), 5:30PM (evening rush hour), and 10PM
(evening hour). As shown in Fig. 5a, the traffic volumes on
different road segments are varied. The road segments with
large traffic volume during evening rush hours are circled (see
Fig. 5b). Since the high volume is likely caused by off-work
crowd, we assume a surge of HVs on the road network, causing
dramatic drops of RV rates on these busy road segments, which
naturally serve as low-RV-rate spawn points.

B. Traffic Forecasting

1) Baselines and metrics: We compare the effectiveness of
our graph propagation-based traffic forecasting method with
several commonly used traffic forecasting methods:

• CONST: constant prediction, which assumes that traffic
flow will remain stable and constant throughout the
forecasting horizon.

• VAR: Vector Auto-Regression [27] that is implemented
in the python package statsmodel3.

• DCRNN [8]: The state-of-the-art diffusion convolutional
recurrent structure that leverages directed graph for traffic
flow forecasting.

We use the following three metrics to evaluate the accuracy
of our forecasting results:

• Mean Absolute Error (MAE)

MAE =

∑n
i=1 |yi − ŷi|

n
, (11)

• Root Mean Squared Error (RMSE)

RMSE =

√∑n
i=1(yi − ŷi)2

n
, (12)

• Mean Absolute Percentage Error (MAPE)

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ . (13)

The variables yi and ŷi correspond to the actual and predicted
values, respectively, and n represents the length of the data.

2) Datasets and results: We conduct experiments over 20
simulation runs with each run lasting 2000 steps. We use
simulation data to train and test our forecasting model: 70%
of the data for training, 20% for evaluation, and 10% for
validation. We aggregate the RV penetration rate on each road
segment into time-series windows.

Table I compares the performance of the traffic forecasting
methods using 10, 50, and 100 steps as the prediction horizon.
All predictions use 1-step history as input. Long-term fore-
casting is achieved by running the prediction models consecu-
tively. The experiments show that our method better captures
network-wide evolution of traffic flow by outperforming the
three baseline methods in both short-horizon and long-horizon
traffic forecasting. The accurate predictions form a foundation
for all subsequent processes of our framework.

3https://www.statsmodels.org/stable/index.html

TABLE I: Performance comparison of traffic forecasting methods.

Horizon Metrics CONST VAR [27] DCRNN [8] Ours

10 step
MAE 0.898 0.099 0.069 0.068

RMSE 1.364 0.201 0.187 0.117
MAPE 1.097 0.123 0.093 0.092

50 steps
MAE 1.102 0.125 0.105 0.101

RMSE 1.672 0.252 0.237 0.138
MAPE 1.341 0.174 0.149 0.138

100 steps
MAE 1.505 0.145 0.119 0.109

RMSE 2.283 0.273 0.251 0.144
MAPE 1.824 0.195 0.167 0.150

C. Route Selection

We evaluate our route selection mechanism by comparing
it to several other route planning algorithms. We use the
shortest route planner as the baseline. During evaluation, we
employ either our method or the shortest route planner. The
RV penetration rates of all road segments are recorded, and the
RV shortage index (Shortage Index or S.I.) used in evaluation
is defined as follows:

shortage index(e) =

{
0 if Pe > Ptarget,

Ptarget − Pe otherwise,
(14)

where shortage index(e) denotes the RV shortage index of
road segment e, Ptarget and Pe are the predefined target RV
penetration rate and the recorded RV penetration rate on e,
respectively.

In our simulation, spawned vehicles will be randomly
designated as either HV or RV based on a predefined RV
penetration rate. We evaluate three target RV rates Ptarget =
{50%, 60%, 80%}. The corresponding spawn RV rates are set
higher as {55%, 65%, 85%}, since it is necessary to have
a surplus of RVs for reallocation; otherwise, at least one
road segment in the network will suffer from RV shortage.
During evaluation, we set the RV rate to 20% at several
designated spawn points to mimic real-world traffic conditions
as discussed in Sec. IV-A.

Fig. 6 gives an example of re-routing to mitigate the RV
shortage issue. Fig. 6a shows the RV shortage index for each
road segment, with an arrow indicating the re-routing task of
an RV. Fig. 6b and Fig. 6c illustrate the original and proposed
routes of the designated RV, respectively. Shown in Fig. 6a,
the designated RV chooses the proposed new route via the
road segment experiencing the RV shortage issue

The results illustrating the shortage indices of the road
network after 900 steps are shown in Fig. 7: the top figures
display, using the baseline method, the severity of shortages
across the entire road network as well as the zoomed-in views
of three critical areas. The average RV shortage index (Avg.
S.I.) of the three critical areas are also shown. In contrast, the
bottom figures present the results of using our method. It is
apparent that our method effectively mitigates the RV shortage
issue across the road network.

Fig. 8a shows the shortage indices of using the baseline
method are almost uniformly distributed from 0.0 to 0.5. In
contrast, when our method is adopted, the shortage indices
concentrate more in low-scoring areas, e.g., (0.0, 0.1) and
(0.1,0.2), as shown in Fig. 8b. These results provide further
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Fig. 6: An example of re-routing an RV. (a) The RV shortage index of each road segment is shown and re-routing tasks of RVs are created.
(b) The original route of a designated RV. (c) The proposed new route of the designated RV for mitigating the RV shortage issue of the
marked road segment.

Fig. 7: The RV shortage issue of the road network along with zoomed-in views of three critical areas. Our method (bottom figures) shows
apparent advantages of mitigating the RV shortage issue (measured in average RV shortage index, i.e., Avg. S.I.) over the baseline method
(top figures).

Fig. 8: The spatial distribution of shortage indices over the road
segments of the test road network. The x-axis is the shortage index
and the y-axis shows the frequency. Our method effectively mitigates
the RV shortage issue of the road network indicated by more indices
concentrating in lower-scoring areas.

evidence that our method effectively mitigates the RV shortage
issue across the entire road network.

Fig. 9 presents quantitative results of our route selection

mechanism. The average RV shortage indices over all road
segments are reduced as the RV penetration rate increases. A
notable example is when the RV penetration rate is 50%, the
average shortage index is reduced by 69.4% in Scenario 3 via
our method. As the RV shortage issue gets alleviated, more
RVs can be leveraged to smooth traffic conditions of a road
segment.

D. Large-scale Mixed Traffic Coordination

We present the results of deploying our method in the entire
test area by comparing it with three baseline methods:

• NoTL: All traffic signals are off and no RV is present.
• TL: Traffic is coordinated using traffic signals.
• Wang [3]: The state-of-the-art mixed traffic coordination

method for single intersections.
We run each experiment for 1000 steps with the same RV

penetration rate set for our method and Wang [3]. In Fig. 10,
we present the average waiting time of all vehicles across the
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Fig. 9: Evaluation of our route selection mechanism. We report the average shortage index as a result of using our method vs. using the
baseline method in three test scenarios. The results suggest that our method can mitigate the RV shortage issue and re-balance the RV rate
across the entire road network.

Fig. 10: Comparison of our method to other baseline methods in mixed traffic control. The x-axis denotes traffic coordination methods and
the y-axis is the average waiting time of all vehicles in the test area. The results show that our method is the most effective among the
evaluated methods.

entire network. Our method not only outperforms Wang [3]
at the same RV penetration rates but also outperforms the
traffic light baseline starting at 50% RV rate. For instance,
the average waiting time is reduced by 27% when the RV
penetration rate is 50% in Scenario 3. In comparison, Wang [3]
starts to outperform the traffic light baseline when the RV
penetration rate is 60% or above.

V. CONCLUSION AND FUTURE WORK

We propose a framework for large-scale mixed traffic
control and coordination. Our framework consists of three
novel methods: a privacy-protecting crowdsensing method for
collecting local traffic conditions, a graph propagation-based
traffic flow forecasting method for predicting RV penetration
rates of the road network, and a privacy-preserving route
selection mechanism for mitigating network-wide RV short-
age issues. Our framework has been evaluated using a real-
world network. Extensive experiments show that our approach
outperforms other baseline methods over all sub-tasks and
substantially improves the overall efficiency of mixed traffic
control and coordination.

There are many future directions we can pursue. First of
all, federal learning can be adopted by our framework to
form a privacy-preserving and context-aware routing algo-
rithm. Second, city-scale traffic information can be combined
with previous city-scale traffic reconstruction and optimization
techniques [28], [29] to scale up our test scenarios. Finally, the
integration of additional smart city technologies and devices
for sensing and communication can further enhance the effi-
ciency of mixed traffic control and coordination.
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