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Abstract— This paper presents a novel robust online cal-
ibration framework for Ultra-Wideband (UWB) anchors in
UWB-aided Visual-Inertial Navigation Systems (VINS). Accu-
rate anchor positioning, a process known as calibration, is
crucial for integrating UWB ranging measurements into state
estimation. While several prior works have demonstrated sat-
isfactory results by using robot-aided systems to autonomously
calibrate UWB systems, there are still some limitations: 1)
these approaches assume accurate robot localization during
the initialization step, ignoring localization errors that can
compromise calibration robustness, and 2) the calibration
results are highly sensitive to the initial guess of the UWB
anchors’ positions, reducing the practical applicability of these
methods in real-world scenarios. Our approach addresses these
challenges by explicitly incorporating the impact of robot
localization uncertainties into the calibration process, ensuring
robust initialization. To further enhance the robustness of
the calibration results against initialization errors, we propose
a tightly-coupled Schmidt Kalman Filter (SKF)-based online
refinement method, making the system suitable for practical
applications. Simulations and real-world experiments validate
the improved accuracy and robustness of our approach.

I. INTRODUCTION

Visual-inertial navigation system (VINS) is favored in
robot state estimation due to its accuracy, reliability, and
lightweight design [1], [2]. Nevertheless, VINS suffers from
cumulative drift due to inherent limitations in visual-based
localization methods. While GPS provides a natural solution
for external localization information in outdoor environ-
ments, its reliance on open spaces makes it unsuitable for
use in GPS-denied or indoor settings. To address this, many
recent works incorporate Ultra Wideband (UWB) measure-
ments into the VINS to leverage the global observation
provided by UWB for better localization performance [3]–
[5].

Specifically, UWB-aided VINS utilizes ranging measure-
ments between the robot and the UWB anchor to enhance
robot state estimation. Accurate robot localization requires
precise knowledge of these UWB anchor positions, a process
known as UWB calibration. Many previous studies have
proposed self-calibration, where a robot autonomously cal-
ibrates the anchor positions using the geometric relations
between its position and the anchor positions, subsequently
integrating these calibration results into the VINS [6], [7].
Most UWB self-calibration methods typically involve two
key steps: an initialization phase to estimate coarse anchor
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Fig. 1: System Overview: The proposed robot-aided UWB
calibration system contains two stages: A robust initialization
stage and a SKF-based refinement stage.

positions, followed by a refinement phase to improve these
estimates. These methods fall into two categories: (i) loosely-
coupled methods, where calibration is handled by a separate
estimator independent of robot localization, and (ii) tightly-
coupled methods, where both the robot state and UWB state
are jointly estimated within a single framework. Tightly-
coupled methods offer greater flexibility [8] and outperform
loosely-coupled approaches in both anchor calibration and
robot localization [4].

However, during the initialization phase, many existing
works implicitly assume that the localization of robots is
accurate. This assumption neglects the impact of localization
uncertainties, which can lead to poor initial estimates of
UWB anchor positions. Additionally, the performance of
tightly-coupled calibration systems are heavily sensitive to
the accuracy of initial UWB parameters [9]. In practice,
obtaining precise initial guesses is challenging, potentially
degrading system performance and, in some cases, causing
system failure.

Statement of Contribution: To address the challenges iden-
tified in UWB calibration, we propose a robust calibration
method for improving both the performance and reliability
of existing calibration frameworks. The main contributions
of this paper are as follows:

• We propose a novel UWB initialization method that explic-
itly accounts for uncertainty in robot localization during
the initialization process, improving both the performance
and robustness of calibration in the presence of various
robot localization uncertainties.

• We show, through experiments and analysis, that the ini-
tialization phase of UWB calibration can significantly im-
pact the overall performance of the calibration system. We



propose a tightly-coupled Schmidt Kalman Filter (SKF)-
based online calibration method to reduce the influence of
initialization errors on the calibration process.

• We perform extensive simulations and experiments to val-
idate the performance of the initialization and calibration
methods compared with baselines.

II. RELATED WORKS

UWB measurements have been widely utilized to enhance
robot localization in numerous studies. In early researches
[10]–[14], anchor positions were calibrated offline and used
as prior knowledge for drift-free state estimation. While these
methods effectively reduce the drift in VINS, performing
offline calibration becomes challenging in dynamic or large-
scale environments.

Several studies have explored the use of raw UWB
measurements and robot localization information for self-
calibration [15]. Typically, self-calibration of UWB involves
two key steps: an initialization phase to estimate coarse an-
chor positions, followed by a refinement phase to improve the
initial estimates. In [3], a consistent visual-inertial-ranging-
odometry system is proposed, where the anchor positions are
initially estimated by solving a least squares problem and
are then jointly optimized with the VINS state in a tightly-
coupled manner. Refs. [7], [9] observed that the robot’s
trajectory can significantly influence the calibration process,
and design path-planning algorithms to compute an optimal
trajectory for improved calibration accuracy. The studies
in [7], [16] notice that the ranging measurement can be
deteriorated by additional distance-dependent biases due to
the signal block in cluttered environments. Even though the
anchor position is precisely calibrated, the inconstant bias
may introduce additional errors. Therefore, the bias term
of the ranging measurements are introduced to improve the
calibration. In [17], a fully distributed calibration framework
is introduced to initialize large-scale UWB networks, sig-
nificantly reducing computational complexity on the robot’s
side. For the purpose of robust calibration, multiple studies
have pointed out a crucial fact that the calibration results are
sensitive to the initial guess and hence aim to enhance the
initial guess for robust calibration performance [4], [9], [18].
To avoid the non-line-of-sight (NLOS) problem, an object
detection-based calibration method is proposed in [4] that
directly uses visual measurements to initialize the anchor
positions.

Nevertheless, none of the above mentioned works consider
the fact that the robustness of the calibration is highly
sensitive to the accuracy of the robot’s localization and
the initialization values. Therefore, these approaches still
have the following limitations: 1) Anchor initialization is
based on the assumption of accurate robot positioning,
which compromises the robustness of the estimated anchor
positions; and 2) Jointly estimating the robot state and
anchor positions, if the anchor has an inaccurate initial guess,
can significantly degrade the robot’s localization, leading to
further inaccuracies in the calibration process.

III. PRELIMINARIES

A. Problem Formulation

Consider a robot in a 3-D environment equipped with
a visual-inertial sensor for ego-motion measurement and a
UWB tag for distance measurement. We first define the
IMU and camera frames as I and C, respectively, while G
represents the global frame. There are M position-unknown
UWB, denoted as Gpai

, i = {1, 2, ...,M}, to be estimated
in our setup.

The UWB tag on the robot can provide the ranging
measurement between the robot and the UWB anchor i
at timestep tk, denoted as di,k. Given the UAV’s pose
(IkG R,G pIk) and the anchor position Gpai

, the ranging
measurement is described by the following model:

di,k = βi(∥GpIk + Ik
G R

⊤IpT − Gpai
∥+ nu) + γi (1)

where nu ∼ N (0,Qd), and IpT represents UAV tag’s
position in its IMU frame, which can be easily calibrated
offline. Two bias terms βi and γi, firstly introduced in [7],
are included to better reflect, in practice, the difference of
UWB sensor reading and the true distance. It is important to
note that βi and γi are path-dependent biases [7], designed
to capture the position dependency of the range error.

In the UWB-aided VINS, the UWB should be calibrated
at first, so that the UWB ranging measurements can partic-
ipate the estimation of robot position. This paper primarily
focuses on UWB calibration rather than robot localization.
The objective is to use a UAV equipped with a visual-
inertial sensor to automatically calibrate the UWB, i.e.,
estimate (Gpai

, βi, γi), while ensuring robust and consistent
calibration results by accounting for the uncertainty in robot
localization.

B. System Overview

We propose a two-phase calibration scheme for the UWB-
aided VINS as shown in Fig. 1. It is important to note that
the method of this paper focuses solely on the robot-aided
calibration phase, rather than UWB-aided robot localization.
In particular, the proposed calibration system consists of
two phases: a robust initialization phase (Sec. V) and a
SKF-based online refinement phase (Sec. VI-B). In the
first phase, the objective is to find an initial guess of the
anchor position Gpai

and the unknown bias parameters
(βi, γi). The VINS runs normally after the visual-inertial
initialization is completed. Once the UWB tag receives a
ranging measurement and the ID from any of the anchors,
the ranging measurement and the robot pose estimate will be
stored for initialization. Since the robot localization results
are directly used to initialize the UWB, the uncertainty
of robot localization also affects the UWB estimation. To
ensure robust estimation, we incorporate VINS uncertainty
into the initialization process. Once the initialization phase
is completed, the system transfers to the online refinement
phase to improve the initial UWB guess in the second stage.



IV. VINS-AIDED CALIBRATION SYSTEM

In this section, we extend the standard Multi-State Con-
straint Kalman Filter (MSCKF)-based VINS [19] framework
to incorporate additional calibration for the UWB system.

A. System State and Model

The state vector at each timestep tk, denoted as xk, is
defined by

xk ≜
[
x⊤
rk

x⊤
Uk

]
=
[
x⊤
Ik

x⊤
Ck

x⊤
Uk

]⊤
xIk =

[
Ik
G q⊤ b⊤

g
Gv⊤

Ik
b⊤
a

Gp⊤
Ik

]⊤
xCk

=
[
Ck

G q⊤ Gp⊤
Ck

...
Ck−N

G q⊤ Gp⊤
Ck−N

]⊤
xUk

=
[
Gp⊤

a β γ
]⊤

(2)

where xrk denotes the active MSCKF state. The xIk is the
IMU state including IMU’s orientation, position, velocity,
and biases; xCk

is the clone of historical IMU poses when
features are observed by camera; xCk

denotes the clone of
the historical cameras states. xUk

denotes the UWB state
which contains the anchor position Gp⊤

ak
the UWB model

parameters (β, γ). For simplicity, we consider only a single
UWB anchor in our analysis; Nevertheless, this framework
can be easily extended to multiple anchors. To represent the
system’s covariance matrix more clearly, we introduce the
following partitioning for the covariance

Pk|k =

PIIk|k PICk|k PIUk|k

P⊤
ICk|k

PCCk|k PCUk|k

P⊤
IUk|k

P⊤
CUk|k

PUUk|k

 (3)

where PIIk|k ∈ R15×15 is the covariance of the IMU
state, PCCk|k ∈ R6N×6N is the covariance of the camera
estimate, and PUUk|k ∈ R5×5 is the covariance of the
UWB state; PICk|k ,PIUk|k ,PCUk|k denotes the correspond-
ing cross-correlations. The covariance matrix will be initially
constructed upon completion of the initialization step, as
described in (Sec. V).

The state xk will be propagated forward with IMU’s linear
velocity and acceleration measurements based on the IMU
kinematic model [20]. To propagate the state covariance
matrix, we linearize the IMU kinematics and compute the
state transition matrix Φ(tk+1, tk) [20]. With notation (3),
the corresponding state covariance can be propagated as

Pk+1|k =

PIIk+1|k PICk+1|k PIUk+1|k

P⊤
ICk+1|k

PCCk|k PCUk|k

P⊤
IUk+1|k

P⊤
CUk|k

PUUk|k

 (4)

where PIIk+1|k is the propagated IMU covariance.
PICk+1|k = Φ(tk+1, tk)PICk|k , and PIUk+1|k =
Φ(tk+1, tk)PIUk|k .

B. Measurement Update Model

Camera update model: When a static landmark of the
environment, denoted as Gpf , is tracked by the camera at

timestep tk, the corresponding feature measurement can be
obtained through the following model

zC,k = Λ(Ckpf ) + nc

Ckpf = C
I R

Ik
G R(Gpf − GpIk) +

CpI (5)

where nc ∼ N (0,Qc) is the white Gaussian noise with
covariance Qc. The Ckpf is the landmark position in the
camera frame, and the projection function Λ(·) is defined
as Λ(

[
x y z

]⊤
) =

[
x/z y/z

]⊤
. By linearizing the

measurement equation, the camera measurements can be
incorporated into the EKF update, as detailed in [19].
UWB update model: Once the robot receives a ranging
measurement from the anchor, this measurement will be
used for state update. Given the measurement model (1),
we linearize it at the current estimate x̂Ik as

d̃k = HIk x̃Ik +HUk
x̃Uk

+ nu (6)

Since our formulation and derivation assume only a single
anchor, we simplify the notation by omitting the subscript i
in the variable di,k in the following derivation. The Jacobian
corresponding to the IMU state, denoted as HIk , and the
Jacobian corresponding to the UWB state, which includes
(Gpa, β, γ), denoted as HUk

, can be computed as:

HIk = Hp

[
−⌊IGR̂⊤IpT×⌋ 03×9 I3

]
HUk

=
[
−Hp Hβ 1

]
(7)

where the matrices Hp and Hβ can be computed as

Hp =
β̂
(
Gp̂Ik + Ik

G R̂⊤IpT − Gp̂a

)⊤
∥Gp̂Ik + Ik

G R̂⊤IpT − Gp̂a∥
Hβ = ∥Gp̂Ik + Ik

G R̂⊤IpT − Gp̂a∥ (8)

V. ROBUST INITIALIZATION BY STOCHASTIC
OPTIMIZATION

To integrate the ranging measurement into the navigation
system, an initial estimate of the UWB anchor position Gpa

and the model parameters (β, γ) is required for the anchor.
To simplify the initialization during implementation, we
temporarily fix the value of β = 1 at this stage, and update
it in the next refinement stage. We assume that the robot’s
state, as obtained through the VINS, along with ranging
measurements, are readily accessible during the initialization
phase, stored within a time window of length m.

Remark 1: The parameter β in the UWB model (1) is
typically very close to 1 in actual test results. In fact, many
papers simply assume this value to be 1 for practical use [3],
[16]. Therefore, during the initialization stage, we set β to 1
as an initial guess. It is then refined in the subsequent stage
(see refinement stage in Sec. IV).

A. Robust Initialization Formulation

Building on the previous analysis, the uncertainty in the
UAV’s pose estimate can significantly affect UWB cali-
bration and must be considered for robust performance.
Although VINS drift is small during the initialization phase,
neglecting this uncertainty can lead to inconsistencies in



the estimator and degrade initialization accuracy. To address
this, we propose a robust initialization method that explicitly
integrates UAV pose uncertainty into the calibration process.
Specifically, we formulate the following stochastic robust
approximation problem [21, Sec. 6.4] to estimate the UWB
state (Gpa, γ), treating the robot’s state as a stochastic
variable

min
Gpa,γ

m∑
k=1

ExIk
(∥dk − h(xIk ,xU )∥2) (9)

where the above expectation E(·) is taken over the instantia-
tions of all possible robot (IMU) state xIk . This accounts for
the fact that xIk is a random variable subject to uncertainties.
dk is the collected ranging measurement. h(·) is the UWB
measurement function, referenced in (1). xUk

= (Gpai , γi) is
the UWB state to be estimated. Since the cost in (9) involves
an expectation which cannot be directly solved, a common
approach is to approximate the expectation and reformulating
the problem into a regular optimization formulation. In
particular, we linearize the measurement function h(·) at the
current UAV’s state estimate x̂Ik using the first-order Taylor
expansion to approximate the cost function (9) as

m∑
k=1

ExIk
(∥dk − h(xIk ,xU )∥2) ≈

m∑
k=1

(
∥dk − h(x̂Ik ,xU )∥2 + trace(HIkPIIkH

⊤
Ik
)
)

(10)

where the jacobian HIk is computed in (7), and the term
trace(H⊤

Ik
PIIkHIk) denotes the contribution of the UAV’s

pose uncertainty to the UWB estimation. By incorporating
this term into the cost function, the uncertainty of the UAV’s
pose is explicitly considered in the optimization process,
leading to a more robust initialization. This approximated
cost function can then be efficiently minimized using iterative
methods such as Gradient Descent or Gauss-Newton. A more
detailed derivation of this approximation process is provided
in App. A of the supplementary material [22].

This coarse estimate will serve as an initial guess for
the tightly-coupled online refinement approach described
in the following section. Before the refinement step, the
state covariance has to be initialized in accordance with
the structure of (3). In particular, we have to initialize the
covariance of the UWB state and its correlations with the
existing state variables as shown in Figure 2. We adopt
a method very similar to the "state variable initialization"
method described in [1]. We first define a state XI that
contains the IMU state from timestep k = 0 to k = m
as

XI =
[
x⊤
I0

x⊤
I1

· · · x⊤
Im

]⊤
(11)

and then stack all the available UWB measurements d =[
d0 · · · dm

]⊤
to construct a stacked measurement model

as

d = h(XI ,xU )

h(XI ,xU ) = [h(xI0 ,xU ), ..., h(xIm ,xU )]
⊤ (12)

Fig. 2: To ensure a consistent state estimation, we need to
compute the covariance of the UWB state and its cross-
correlations with the existing MSCKF state. This step is
crucial for maintaining the integrity of the filter, as it properly
accounts for the uncertainties associated with the newly
introduced UWB state.

where h(·) satisfies the UWB measurement model (1). Then
we linearize the stacked measurement model, which yields

d̃ =
[
HA HB

] [X̃I

x̃U

]
+ n̄u (13)

where n̄u represents the stacked noise vector, and HA and
HB are the corresponding measurement jacobians given by

HA = diag(HI0 , · · · ,HIk)

HB = diag(HU0 , · · · ,HUk
) (14)

We then decompose the linearized system (13) into two
subsystems using QR decomposition, expressed as:[

d̃1

d̃2

]
=

[
HA1

HA2

HB1
0

] [
X̃I

x̃U

]
+

[
n̄u1

n̄u2

]
(15)

Then, the covariance of the UWB state and its correlations
to the existing state xIk and xCk

can be computed and used
to augmented to the current covariance following [1].

B. FIM-based Analysis

This section presents an analysis of the effectiveness
and performance of the proposed robust initialization using
the Fisher Information Matrix (FIM) [23], which quantifies
the information contained in the observed data about the
unknown parameter being estimated. Mathematically, it is
defined as the expectation of the outer product of the gradient
of the log-likelihood function [23]:

F = E

[(
∂ℓ(d;xU )

∂xU

)(
∂ℓ(d;xU )

∂xU

)⊤
]
, (16)

where the definition of d is provided in (12) and xU denotes
the UWB state to be estimated; ℓ(d;xU ) represents the log-
likelihood function of the measurement model. To calculate
this log-likelihood function ℓ(d;xU ), we first formulate
the corresponding likelihood function, denoted as p(d;xU ),
based on the stacked measurement model (12), as follows

p(d;xU ) =
1

(2π)
N
2 det(Σ)

1
2

exp
(
(d− h)

⊤
Σ−1 (d− h)

)
(17)

where Σ = diag(Σ0, · · · ,Σk, · · ·Σm) denotes the covari-
ance which quantifies the overall system uncertainty. In most
existing works [6], [9], the term Σk is typically regarded
as the measurement covariance Qd. However, as previously



analyzed, uncertainty arises not only from measurement
noise but also from the robot’s localization error. Therefore, it
is crucial to explicitly account for localization uncertainty in
the covariance term Σ during initialization. In our approach,
we model the localization uncertainty PIIk as additional
measurement noise, leading to the modified covariance for-
mulation:

Σk = Qd +HIkPIIkH
⊤
Ik

(18)

It is important to note that the covariance Σk is also a
function of the UWB estimate xU , as the value of the
jacobian HIk depends on the UWB state xU , as derived
in Sec. IV-B of the paper. Therefore, both the mean and
covariance of d are functions of xU . Such a distribution can
be written as d ∼ N (h(xU ),Σ(xU )), which is referred to
as the General Gaussian Distribution [24, Section 3.9]. For
this General Gaussian Distribution, there is also a general
expression of the FIM according to [24, Section 3.9], where
the (i, j)-th element of F is given as

Fij =

(
∂h(xU )

∂xi
U

)⊤

Σ(xi
U )

−1

(
∂h(xU )

∂xj
U

)
+

1

2
trace

(
Σ(xi

U )
−1 ∂h(xU )

∂xi
U

Σ(xi
U )

−1 ∂h(xU )

∂xj
U

)
(19)

where xi
U and xj

U denotes the i-th and j-th element of the
state vector xU , respectively. A more detailed derivation
and analysis of the FIM is provided in App. B of the
supplementary material [22].

Remark 2: Due to that Σ is a function of xU , the second
term of (19) is non-zero, unlike the FIM with a zero-
mean Gaussian assumption. Since det(F) is inversely pro-
portional to the uncertainty level, from (19), we can make a
simple inference about the algorithm’s performance: 1) As
the uncertainty in robot localization xIk increases, det(F)
decreases, leading to reduced initialization accuracy; 2) Static
robot motion or motion constrained to a single plane, such
as movement limited to the xy-plane, can cause det(F) to
become singular, making it unsolvable.

VI. SKF-BASED ONLINE REFINEMENT

After obtaining an initial estimate of the unknown UWB
parameters, the next step is to refine this estimate, in the fol-
lowing represented as xU = {Gpai

, βi, γi}, to obtain a more
accurate calibration. In this section, we propose a SKF-based
estimator built upon the previously discussed MSCKF-based
calibration system (Sec. IV), to perform robust refinement in
a tightly-coupled fashion.

A. Issues of Standard EKF-based Update
Before introducing the proposed SKF-based framework,

we first analyze the issues of the standard EKF-based ap-
proach and provide numerical tests to demonstrate it, which
motivates the proposed SKF-based approach. According to
the standard EKF,1 the system state is updated by either

1Throughout this paper, x̂k+1|k , x̂k+1|k+1 denotes the prior and pos-
terior estimate at time tk+1, respectively. The operator ⊞ denotes the EKF
update process, where the state estimate is corrected using the update δx
as x̂k+1|k+1 = x̂k+1|k ⊞ δx

camera measurements or UWB ranging measurements as
follow:

x̂k+1|k+1 = x̂k+1|k ⊞Kr

Pk+1|k+1 = Pk+1|k −KSK⊤ (20)

where r denotes the measurement residual; The Kalman gain
K and the innovation S can be computed as

K =

[
Kr

KU

]
= Pk+1|k −

[
H⊤

r

H⊤
U

]
S−1 (21)

S =
[
Hr HU

]
Pk+1|k

[
H⊤

r

H⊤
U

]
+Q (22)

where we partition the gain K into two parts Kr and
KU , denoting the Kalman gain for the active MSCKF state
xr and the UWB state xU , respectively; Hr and HU are
the corresponding state Jacobians. Q is the measurement
covariance, which can be either the UWB covariance Qd or
the camera covariance Qc, depending the on measurement
type. This system tightly couples the IMU, camera, and
UWB, allowing for the joint estimation of both the robot
state and the UWB state, where the robot’s localization aids
UWB calibration through a unified estimator. Nevertheless,
the performance of the EKF-based method is highly sensitive
to two key factors: the initial UWB parameters and the
accuracy of the UWB model. If UWB measurements are
naively fused with incorrect initial guesses or an inaccurate
model, it can degrade robot localization performance and
adversely affect UWB calibration results. To better illustrate
this, we conduct numerical tests (cf. Sec. VII-A) to explore
how these factors affect the overall system performance,
which motivates the proposed SKF-based framework for the
UWB calibration.

During the UWB calibration, the robot localization pro-
vided by VINS is generally accurate as long as the robot’s
motion is minimal without aggressive maneuvers, whereas
the UWB parameters are uncalibrated and may not be suffi-
ciently accurate. In such cases, using UWB measurements to
update the state with poorly initialized parameters—such as
an incorrect anchor position—can degrade localization accu-
racy and thus impact UWB calibration. This phenomenon is
confirmed by the simulations described in Sec. VII-A. We
observe that the initialized anchor positions can exhibit sig-
nificant errors in the z-direction if the robot does not undergo
substantial vertical motion changes during the initialization
process. This initialization error can further lead to additional
localization inaccuracies when the UWB measurements are
used to update the state, causing the refinement step to fail.
Accuracy of the UWB model: The accuracy of UWB
measurements can be influenced by several factors, such as
anchor configurations [16] and the presence of obstacles [25].
Although the measurement model in (1) shows satisfactory
performance, it still imperfect that may not accurately cap-
ture errors across different scenarios. Deriving a universally
accepted model and determining the noise level is a nontrivial
task. To test the performance with different noise levels
and model parameters, we conduct extensive Monte-Carlo
simulations as described in Sec. VII-A. From Table I, we



observe that both robot localization and UWB calibration can
only be improved when the noise parameters are properly
tuned and the model is accurately defined. If the noise
parameters are tuned too low compared to the true noise
value, fusing the UWB measurements to update the state
will result in inconsistent estimation, ultimately degrading
localization accuracy even with a good initialized UWB
parameters.

B. SKF-based Update

As discussed in the previous section, tightly-coupled
VINS-aided UWB calibration heavily relies on the accuracy
of the initialized UWB parameters and the selection of the
measurement model. However, in practice, both of these
factors are highly susceptible to environmental influences,
making it challenging to achieve optimal results simulta-
neously. Therefore, to achieve accurate UWB calibration
while ensure the performance of robot localization to avoid
potential inaccuracies, we propose to leverage the Schmidt-
Kalman filter (SKF) [26]. The SKF updates only a selected
subset of state variables while keeping the estimates of other
variables fixed. We encourage the readers to refer to [26]
for more detailed introduction. However, it still maintains
consistency by accurately tracking all correlations.

Specifically, during the UWB update, we only update the
UWB state and set the gain of the active MSCKF state to
zero based on the SKF.

x̂k+1|k+1 = x̂k+1|k ⊞

[
0
KU

]
r

Pk+1|k+1 = Pk+1|k −
[

0 ∆PrU

∆P⊤
rU ∆PUU

]
(23)

with

∆PrU = KrHx

[
P⊤

rU P⊤
UU

]⊤
, ∆PUU = KUSK

⊤
U

(24)

where PrU denotes the cross-covariance of between the
active MSCKF state and the UWB state as defined in (3).
Obviously, the active MSCKF state and its covariance do
not change during the UWB calibration, whereas the UWB
state is still being updated and the correlation is still being
tracked. The ranging measurements only update the UWB
state and its correlation, and even with a poor initial guess of
the UWB state or an inaccurate model parameters, the robot’s
localization will remain unaffected during the calibration.
Note that the visual-measurement is still updated based on
the standard EKF as illustrated in Sec. VI-A. To ensure
the consistency of the estimator, we employ First Estimate
Jacobians (FEJ) when computing the Jacobian [27]. The
proposed SKF-based approach guarantees the performance
of robot localization during the UWB calibration, thereby
enhancing the robustness of the calibration process.

VII. EXPERIMENTS AND VALIDATIONS

A. Simulated Experiments

This section presents the simulation experiments to eval-
uate the performance and robustness of the proposed cali-
bration method (robust initialization and SKF-based online

(a) Simulated trajectory (b) Anchor initialization errors
Fig. 3: Comparison of RI and LSI under various robot
localization errors.

refinement) across various scenarios, parameter settings, and
noise levels. In the simulation, we utilize the visual-inertial
measurements from the Euroc datasets [28], and simulate
additional UWB ranging measurements from four UWB an-
chors, with a measurement density of 0.10m and a frequency
of 10Hz. The bias terms (β, γ) are set to (0.9,−0.3m).
The used simulation platform is provided from [20]. The
simulation platform used in this work is provided by [20].

Robust initialization: We first evaluate the initialization
performance under varying levels of localization uncertainty.
Monte Carlo simulations were conducted in Matlab by gen-
erating UWB measurements and random UAV trajectories
with different localization errors σr. The anchor position is[
10 10 10

]⊤
. From Fig. 3, when the robot doesn’t have

significant localization error due to it’s small and smooth
motion, the robust initialization (RI) method does not show
significant improvement compared to standard least squares
initialization (LSI) method. However, as the localization
error increases, the error of the LSI method grows rapidly,
whereas the proposed RI method demonstrates robustness
against localization errors. Similar results are observed in
the simulation experiments based on the Euroc dataset. The
proposed RI method outperforms LSI in more challenging
datasets that feature aggressive robot maneuvers.

SKF-based online refinement: Based on the setting from
Fig. 1, we first present the results from MH01, Euroc datasets
as a representative example to analyze the algorithm’s perfor-
mance. As shown in Fig. 5, due to the robot’s limited motion
in the z-axis during the UWB initialization, the UWB initial
estimate has a large error in that direction (as we analyzed
in (cf. Sec. V-B)). Thus, the EKF exhibits significant local-
ization errors in the second stage, as it directly fuses the
UWB ranging measurements to update the UAV state using
an imperfect initial UWB estimate from the initialization
step, which negatively impacts both localization accuracy and
calibration. In contrast, the proposed SKF only uses UWB
measurements to update the UWB state during calibration,
ensuring that localization is not affected by inaccurate initial
UWB values and improving the calibration as well. We also
present the estimation results for all trajectories, as illustrated
in Figure 4.

We further evaluate the performance of the SKF-based
method across different UWB initial values and model
accuracies. We introduce additional error σI to the anchor
parameters to simulate varying initialization errors and adjust
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Fig. 4: Estimated trajectories for all trajectory sequences of the EuRoC MH dataset.

TABLE I: Comparison of SKF and EKF under various initial
error σI and noise parameter σU (Gp̃a denotes the anchor
positioning error)

σI(m) σU PRMSE (m) Gp̃a (m)

0.1 1.0 SKF 0.452 0.312
EKF 0.379 0.271

0.3 1.0 SKF 0.487 0.346
EKF 0.466 0.349

0.3 0.9 SKF 0.489 0.352
EKF 0.546 0.408

0.5 0.9 SKF 0.495 0.422
EKF 0.679 0.771

(a) EKF (b) SKF
Fig. 5: Comparison of SKF vs. EKF refinement

the UWB noise by multiplying it with a factor, σU (with
σU = 1 indicating accurately tuned noise). As shown in
Table I, we observe that the EKF outperforms the proposed
SKF when the model is accurate and the UWB parameters
have a precise initial guess, as it incorporates the ranging
measurements to jointly update both the robot state and
the UWB state. Nevertheless, achieving both conditions
simultaneously is difficult in real-world scenarios. Extensive
experimental results still demonstrate that a imperfect initial
guess of the UWB parameter can degrade the localization
accuracy of the EKF-based method, which consequently
hurts the calibration results, while the SKF-based method
maintains a robust localization performance across different
initial values. Since the SKF only uses the ranging measure-
ments to update the UWB state without correcting the active
MSCKF state, the accuracy of the initial guess has minimal
effect on localization performance. This effectively reduces
the dependency on the precision of the initial guess.

B. Real-world Experiments

We further validate the proposed method by a real-world
dataset, NTU-VIRAL [29], which provides measurement data
of IMU, stereo camera, and UWB ranging measurements

from three anchors.

Experimental settings: As illustrated in Fig. 1, the tra-
jectory data of each dataset is divided into three parts for
testing (as we don’t need the complete robot trajectory that
is too for calibration). The first two parts are used to evaluate
the two stages of the proposed calibration framework: robust
initialization and SKF-based online refinement. The third
stage, UWB-aided UAV localization, is performed based
on the completion of the calibration process to evaluate its
effectiveness. In other word, in each running of the trajec-
tory sequence, the robot will first perform the calibration
process then incorporate the calibrated UWB to update the
estimate. Since the the focus of this paper is the robot-aided
calibration process, here we mainly present the calibration
results (specifically the robot localization and anchor esti-
mation during the calibration process), and compared the
full algorithm results (RI+SKF) with FEJ-VIRO [3] (referred
to as VIRO for simplicity), and RI(proposed)+EKF. The
robot localization performance during calibration is evaluated
using the root mean square error (RMSE).

Calibration results analysis: Table II presents the trajectory
accuracy and anchor estimation accuracy for all methods.
Since we only used a portion of the trajectory for calibra-
tion, the results are based solely on that segment of the
trajectory. We observe that the proposed RI method improves
anchor estimation across all trajectory trials. Additionally,
RI+EKF achieves the best performance in both localization
and calibration when the robot avoids aggressive motion and
its movement is not restricted to a single plane during the
initialization phase, with VIRO showing almost comparable
results. This is because the robot’s smooth motion ensures an
accurate UWB initialization process. With a reliable initial
UWB estimate, both methods update the robot and UWB
states jointly using EKF during the refinement phase, leading
to more accurate state estimation and calibration than SKF,
which only updates the UWB state during calibration. How-
ever, this approach significantly limits the robot’s movement.
If the robot experiences larger drifts during initialization, it
compromises the accuracy of the process. The joint EKF
update of the robot and UWB states, when based on an
inaccurate initial UWB estimate, further degrades both local-
ization and calibration in the EKF-based VIRO and RI+EKF
methods. In such cases, the SKF method proves more robust,
as it better calibrates the UWB, ensuring that localization is
less affected by a poor initial UWB estimate.



TABLE II: Performance of the proposed calibration method
in NTU-VIRAL dataset (on calibration trajectory segments
only)

Dataset Algorithms PRMSE (m) ORMSE (deg) Gp̃a (m)

eee01

VIRO 0.351 5.725 0.485
RI+EKF 0.300 5.723 0.408
RI+SKF 0.287 5.626 0.346

eee03

VIRO 0.329 4.867 0.425
RI+EKF 0.289 4.865 0.422
RI+SKF 0.325 4.871 0.429

nya01

VIRO 0.326 4.652 0.412
RI+EKF 0.319 4.674 0.388
RI+SKF 0.301 4.600 0.375

VIII. CONCLUSION

This paper presents a robust online calibration framework
for UWB-aided VINS systems, addressing the limitations of
previous methods that were sensitive to localization errors
and initial anchor guesses. By incorporating robot local-
ization uncertainty into the UWB initialization process and
employing a tightly-coupled SKF-based online refinement,
the proposed method significantly enhances calibration ac-
curacy and robustness. Extensive simulated and real-world
experiments validate the effectiveness of the approach. In
the future, we plan to extend the framework proposed in
this paper to develop active planning-based calibration algo-
rithms. The focus will be on studying the impact of robot
trajectories, localization errors, and anchor placement on the
calibration results.
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