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Abstract— Human-driven vehicles (HVs) exhibit complex
and diverse behaviors. Accurately modeling such behavior
is crucial for validating Robot Vehicles (RVs) in simulation
and realizing the potential of mixed traffic control. However,
existing approaches like parameterized models and data-driven
techniques struggle to capture the full complexity and diversity.
To address this, in this work, we introduce CARL, a hybrid
approach that combines imitation learning for close proximity
car-following and probabilistic sampling for larger headways.
We also propose two classes of RL-based RVs: a safety RV
focused on maximizing safety and an efficiency RV focused on
maximizing efficiency. Our experiments show that the safety RV
increases Time-to-Collision above the critical 4 second threshold
and reduces Deceleration Rate to Avoid a Crash by up to 80%,
while the efficiency RV achieves improvements in throughput
of up to 49%. These results demonstrate the effectiveness of
CARL in enhancing both safety and efficiency in mixed traffic.

I. INTRODUCTION

Robot Vehicles (RVs) have the potential to revolutionize
transportation by enhancing safety, efficiency, and accessi-
bility for all road users [1]. To fully realize the benefits
of this technology, it is crucial to validate their robustness
through comprehensive testing [2]. While real-world evalua-
tion is essential, it involves significant risks, costs, and time
constraints, making simulation a safer, more efficient, and
cost-effective alternative [3]. Nevertheless, the validation of
RVs in simulation faces the challenge of accurately modeling
the behaviors of Human-driven Vehicles (HVs) [4]. As more
vehicles with varying levels of autonomy are introduced into
our transportation system, the idea of mixed traffic control,
which involves the use of RVs to mitigate problems such as
congestion and delays produced by HVs, has emerged [5]–
[11]. In mixed traffic scenarios where RVs and HVs co-exist,
accurately modeling real-world human driving behavior be-
comes even more critical. However, this remains an open
problem [12].

Among the various aspects of real-world human driv-
ing, longitudinal car-following is the most prevalent [13].
Consequently, accurate modeling of car-following behavior
is crucial for reproducing realistic traffic flows and vehi-
cle interactions in simulation, and is a key component in
addressing the sim-2-real gap [14]. To reproduce the car-
following behaviors of HVs in simulation, there exist two
mainstream methods: parameterized models and data-driven
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Fig. 1: Instantaneous accelerations observed during car-following
behaviors at densities [70, 150] veh/km. TOP: Real-world data
from the I-24 MOTION dataset reveals a distribution having long
tails extending to [−3, 3] m/s2. BOTTOM: IDM (in simulation)
produces accelerations mostly within [−0.5, 0.5] m/s2, indicating
much ‘timid’ driving behaviors than the real world.

approaches. Popular parameterized car-following models,
such as Gipp’s [15], Krauss’ [16], and the Intelligent Driver
Model (IDM) [17], rely on calibrating various parameters
(typically include maximum acceleration, minimum time
gap, and desired velocity) to accurately represent driving
behaviors and vehicle dynamics. However, the performance
of these models heavily depends on the quality of calibration,
and even with robust calibration, they may still fall short in
capturing traffic diversity and lack broad applicability [18].
Enhancements to the IDM model (often a default choice
in simulations like SUMO [19]) by addition of random
noise [20] and tuning with real-world data [21], [22] have
been proposed, but they struggle to reproduce real-world
variability [23] and fail to generalize outside the reference
datasets [24]. Fig. 1 illustrates a typical example, where
the IDM with random noise model fails to capture the
long-tailed distribution of accelerations observed in real-
world data, exhibiting a 24% discrepancy (between real-
world and simulation) in the percentage of accelerations
observed within [−0.5, 0.5] m/s2, i.e., depicting primarily
safe or timid behaviors in simulation. Further, prior studies in
traffic control and coordination often impose artificial limits
on vehicle behaviors, such as bounded accelerations [25]–
[29], which further reduce the accuracy of simulated HVs.

Data-driven approaches such as supervised learning and
Reinforcement Learning (RL) have surpassed IDM in car-
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following simulation accuracy [30]. These techniques train
neural networks on features extracted from real-world
data [30] or use the data to tune the reward function in
RL [31], [32]. Some RL-based approaches also equip HVs
with both leader and follower vehicle information [33].
However, these methods still face challenges in capturing
the full complexity of human driving, as they often require
hand-crafted features and extensive training and tuning [34].
Imitation Learning (IL) offers a promising alternative to
address these shortcomings. By learning directly from expert
demonstrations, IL captures the implicit knowledge and
individual preferences of human drivers, such as safety and
comfort, without the need to specify these objectives. In
addition, IL models can be more robust under environmental
uncertainties and disturbances, as the expert’s behavior may
already account for these factors [35]. While IL shows great
potential, relying solely on it may still not be sufficient to
capture the full spectrum of human driving behaviors and
reactions as IL may overfit and struggle to generalize outside
the training distribution [36].

To address these limitations, we introduce CARL, a hybrid
technique that combines imitation learning and probabilistic
sampling. The key difference in our work is that we consider
the proximity between HVs during car-following to be a
crucial factor in determining the appropriate acceleration
model. When HVs are at close proximity to a leader HV
during car-following, their accelerations are obtained from
the imitation learning model, which captures the nuances of
human driving behavior in these more sensitive situations,
as the consequences of small changes in accelerations are
more profound and potentially dangerous. Conversely, when
the space headway exceeds a threshold, we employ prob-
abilistic sampling to generate accelerations that introduce
realistic variability. This hybrid approach enables CARL to
produce more accurate representations of real-world driving
behaviors, including aggressive acceleration profiles. CARL
leverages the strengths of both machine learning methods,
which offer accurate representations of real-world driving
behaviors, and probabilistic sampling, which minimizes ap-
proximations and assumptions. In addition, we propose two
classes of RL-based RVs: a safety RV focused on maxi-
mizing safety and an efficiency RV focused on maximizing
efficiency. Our RVs are designed to optimize their actions
based on the congestion conditions predicted by a supervised
classifier, whose output is incorporated into the observation
and reward of the RL algorithm.

Under the realistic-accelerations we evaluate the safety
and efficiency and compare CARL with RVs proposed in
prior studies for mixed traffic control. To evaluate safety, we
use two surrogate measures, time to collision (TTC ↑) and
deceleration rate to avoid a crash (DRAC ↓) whereas for
efficiency we measure fuel economy (FE ↑) and throughput
(↑). Our experiments show that our RV consistently out-
performs other methods in safety, increasing TTC above
4 s and reducing DRAC by up to 80%. Whereas in ef-
ficiency our RV achieves improvements of up to 49% in
throughput while also consistently maintaining the second-

highest fuel economy among all evaluated methods. These
results show that CARL effectively improves both safety
and efficiency in mixed traffic. To the best of our knowl-
edge, CARL is the first work to address the crucial gap
between simulated and real-world car-following behaviors
using a hybrid imitation learning approach, and to lever-
age congestion-aware RL for optimizing mixed traffic con-
trol. The project code can be found in the repository:
https://github.com/poudel-bibek/CARL.

II. METHODOLOGY

We introduce our data processing procedure, Intelligent
Driver Model (IDM), Model-based and Heuristic-based RVs,
our RL-based RV, and the imitation of real-world driving
behaviors and perturbations.

A. Data Processing and Intelligent Driver Model (IDM)

We apply a car-following-filter [24] to the I-24 MOTION
dataset [37] with 6.75 km study length and 4 h study time.
The dataset contains different vehicle types such as semi-
trailers, mid-sized trucks, motorbikes, and cars under various
traffic conditions such as approaching standing traffic, lane
changing, and free flow. To extract car-following trajectories,
we select data points that meet the following criteria:

• Ego car is following another car, i.e., has a leader.
• Leader and ego cars are in the same lane ≥ 5 s.
• Ego car’s speed is > 10% of the speed limit, i.e., not

approaching stationary traffic.
• Ego car’s space headway is < 124 m, applying 4 s rule

at the speed limit to avoid free flow conditions.
By applying the filter, we extract a total of 172, 000 instanta-
neous accelerations, their distribution is shown in Fig.1 TOP.
In comparision, Fig. 1 BOTTOM depicts the accelerations
obtained from the IDM car-following model, which assumes
that drivers strive to maintain a safe distance from the leader
vehicle while trying to achieve a target speed. In IDM,
vehicles speed up when the distance to the leading vehicle
is substantial, and decelerate when the distance decreases
below a target minimum gap. The parameters of IDM are
set according to Treiber and Kesting [17] as maximum
acceleration (a) = 1, maximum deceleration (b) = 1.5,
target time headway (T ) = 1, acceleration coefficient (δ) =
4, and minimum gap (s0) = 2.

B. Heuristic-based Robot Vehicles

FollowerStopper (FS): FS [38] is an RV that travels at a
fixed command velocity (target) under safe conditions but
when required, slightly lowers the target velocity to open
a gap to the leader vehicle. This allows the RV to dampen
oscillations and brake smoothly when needed. The command
velocity is given by

vcmd =


0, if ∆x ≤ ∆x1

v ∆x−∆x1

∆x2−∆x1
, if ∆x1 < ∆x ≤ ∆x2

v + (U − v) ∆x−∆x2

∆x3−∆x2
, if ∆x2 < ∆x ≤ ∆x3

U, if ∆x3 < ∆x

https://github.com/poudel-bibek/CARL


where v = min (max (vlead, 0) , U) is the speed of the leader
vehicle, ∆x is the headway of the RV, and U is the desired
velocity. The thresholds (∆x1, ∆x2, ∆x3) are defined as

∆xk = ∆x0
k +

1

2dk
(∆v−)

2, k = 1, 2, 3.

The model parameters ∆x0
k, ∆v−, and dk together determine

the spacing between vehicles and the RV’s responsiveness to
changes in velocity.

Proportional-integral with saturation (PIwS): PIwS [38]
estimates the desired average velocity (U ) of the vehicles in
the network using its historical average velocity. The PIwS
RV calculates the target velocity as

vtarget = U + vcatch ×min

(
max

(
∆x− gl
gu − gl

, 0

)
, 1

)
,

which is used to calculate the command velocity at t+ 1

vt+1
cmd = βt(αtv

t
target + (1− αt)v

t
lead) + (1− βt)v

t
cmd,

where vcatch is the catch-up velocity—a velocity higher than
the average velocity allows the RV to catch up with its leader,
∆x is the difference in position between the RV and its
leader, gl and gu represent the lower and upper threshold
distance, respectively; αt and βt represent the weight factors
for target velocity vtarget and command velocity vcmd,
respectively. Finally, vlead represents leader vehicle velocity.

C. Model-based Robot Vehicles

Bilateral Control Module (BCM): BCM [39] uses infor-
mation about both follower and leader vehicles to obtain a
linear model whose acceleration is given by:

a = kd ·∆d + kv · (∆vl −∆vf ) + kc · (vdes − v),

where ∆d, ∆vl, ∆vf , vdes, and v, represent the difference
in distance to the leader compared to the distance to the fol-
lower, the difference in velocity to the leader, the difference
in velocity to the follower, the set desired velocity, and the
current velocity of the vehicle, respectively. kd = 1, kv = 1,
and kc = 1 are gain parameters.

Linear Adaptive Cruise Control (LACC): LACC is an
improvement over existing cruise control systems that al-
lows vehicles to maintain a safe distance or speed without
communication. One implementation is the constant time-
headway model by Rajamani [40], which employs a first-
order differential equation for approximation. The control
acceleration at time t is given by

at = (1− ∆t

τ
) · a(t−1) +

∆t

τ
· acmd,(t−1),

acmd = k1 · ex + k2 ·∆vl, and ex = s− h · v,

where k1 = 0.3 and k2 = 0.4 are design parameters, ex
is the gap error, s is the space headway, ∆vl is the relative
velocity difference to the leader, h = 1 is the desired time
gap, ∆t is the control time-step, and τ = 0.1 is the time lag
of the control system.

Fig. 2: Input data labeling for the congestion classifier (sensing
zone shown in blue). The congestion classifier takes as input
(position, velocity) of all vehicles in the sensing zone and outputs
the traffic condition based on patterns in space headway.

D. RL-based Robot Vehicles

RL is a T -step episodic task where an agent interacts with
its environment to maximize the sum of discounted rewards.
At each time step, the agent receives a state s, takes an action
a, and the environment returns the next state s′ and reward r.
This is formalized as a Partially Observable Markov Decision
Process represented as (S,A,P,R,Ω,O, γ), where S is the
set of states, A is the set of actions, P(s′, r|s, a) describes
the environment dynamics, R(s, a) is the reward function,
Ω is the set of observations, O(o|s′, a) is the observation
function, and γ is the discount factor. RL-based methods
have gained popularity as an effective alternative to model-
based or heuristic-based methods.

Safety and efficiency goals often conflict in driving scenar-
ios [31]; for example, optimizing for throughput may lead to
reduced space headways and increased velocities, which can
compromise safety. To address this trade-off, we propose two
types of RVs: the safety RV, which prioritizes safety, and the
efficiency RV, which emphasizes efficiency. Both RV types
use the congestion classifier and operate within the same
action and observation space. We train our RVs using the
PPO algorithm [41] with the following MDP components:
• Observation. The RV’s observation ot at time t is a

combination of its own velocity (vt), the relative position
(∆pt) to immediate leader HV and relative velocity (∆vt)
with respect to its immediate leader HV, and the predicted
congestion stage (ct) from the congestion classifier (fCC):

ot = [vt,∆pt,∆vt]⊕ ct,

ct = fCC({rp,i, rv,i}i∈Z),

where Z denotes the set of |Z| = n vehicles within the
sensing zone (55 m), and rp,i and rv,i are the relative
position and velocity of the i-th vehicle, respectively.

• Action.The RV’s action (at) is its acceleration, bounded
within [−3, 3] m/s2.

• Reward. The reward function R(st, at) is a weighted sum
of the RV’s velocity vt (for the efficiency RV) or the



average velocity of all vehicles v̄t (for the safety RV),
an acceleration penalty, and a shaping term based on the
predicted congestion stage ct.

Reward Functions
efficiency RV

R(st, at) = 0.75vt − 2|at|
if ct = Congested ∧ at > 0 then

R(st, at) += min(−1, λ1|at|)
if ct = Leaving ∧ at < 0 then

R(st, at) += λ2|at|
safety RV

R(st, at) = 0.15v̄t − 4|at|
if ct = Forming then

R(st, at) += min(−1, λ3|at|)

where v̄t = 1
n

∑n
i=1 vi,t is the average velocity of all n

vehicles at time t, and λ1 = −10, λ2 = −10, and λ3 = −5
are empirically determined weights.

• Scaling laws. Above 5% penetration, our RVs form pla-
toons with a single leader and multiple followers. For
instance, at 40% penetration, the platoon consists of 9
RVs (22×0.4 = 8.8 ≈ 9), with a leader RV trained at 5%
penetration and 8 followers. The follower RVs observe the
platoon’s state (position and velocity of all vehicles in the
platoon) and optimize the following reward:

Rfollower(st, at) = λ4∆pt,j + λ5∆vt,j + λ6|at,j |+ λ7,

where ∆pt,j and ∆vt,j are the relative position and
velocity of the j-th follower with respect to the leader,
at,j is the follower’s acceleration, and λ4 = −2, λ5 = 4,
λ6 = −4, and λ7 = 10 are empirically chosen weights.
1) Congestion Classifier: Our RL-based approach em-

ploys a congestion classifier, a neural network trained with
supervised learning to predict the congestion stage 10 time-
steps in advance to allow for pre-emptive responses from our
RV. The input features consist of the positions and velocities
of preceding cars within the sensing zone which are mapped
to one of six labels, each representing a distinct stage of
congestion based on the asymmetric driving theory [42]. The
theory suggests human drivers underestimate the required
space headway during deceleration and overestimate it during
acceleration. Consequently, when congestion is forming, the
available space headway decreases monotonically from one
vehicle to the next as we move downstream within the
sensing zone. Conversely, when congestion is dissipating,
the available space headway increases monotonically. The six
labels used to capture the congestion stages are: ’Forming’,
’Leaving’, ’Congested’, ’Free flow’, ’Undefined’, and ’No
Vehicle’, a subset of the labels are shown in Fig. 2.

To train the congestion classifier, we collect the position
and velocity of all the vehicles inside the RV’s sensing zone
(set to 55 m) at traffic density ranges [70 − 133] veh/km.
The collected data is then clustered into six classes using
the K-means algorithm, as shown in Fig.3 (RIGHT), where
the dispersion of clusters indicates the classifiability of the
data. Considering the sequential nature of the data and
the requirement for making predictions multiple time-steps

Fig. 3: LEFT: Confusion Matrix of a trained congestion classifier
in Ring on the validation set with the six classes abbreviated
as: L=‘Leaving’, F=‘Forming’, FF=‘Free Flow’, C=‘Congested’,
U=‘Undefined’, and N=‘No Vehicle’. RIGHT: The results of ap-
plying K-means clustering with t-SNE on a subset of the training
data of the congestion classifier. The clusters are spread out and
distinct suggesting that the data is easily classifiable.

ahead, we choose a time offset of 10 time-steps. This offset
strikes a balance between the usefulness and accuracy of the
predictions. A larger offset, such as 100 time-steps, would
provide more time for the RV to react, but the prediction is
likely to be inaccurate, whereas a shorter offset, such as 1
time-step, would result in accurate predictions but may not
allow sufficient time for the RV to take effective action.

After windowing, the dataset includes instances where the
congestion stage changes from t to t + 10, as well as instances
where the congestion stage remains the same over the
time window. To train the congestion classifier, we sample
data to ensure a balanced representation of transition/non-
transition instances as well as instances containing all six
classes. Worth noting, the ‘No vehicle’ class presents a
unique challenge. The collected data may contain instances
changing from ‘No vehicle’ to another class after the 10 time-
steps. However, based on the input corresponding to ‘No
vehicle’ at t, we cannot predict the congestion stage at t + 10.
Consequently, we discard data points where the ‘No Vehicle’
class transitions to another class after 10 time-steps and
replace them with synthetic examples that simulate various
scenarios for the RV’s position and velocity without leader
vehicles. The congestion classifier is trained for 50 epochs
with validation accuracy of 95.5% (training parameters are
provided in Table I and the confusion matrix on a validation
set is shown in Fig. 3 LEFT). Finally, We incorporate the
predictions of the congestion classifier into the observations
and reward function of the RV.

2) Benchmarking RL Policies: To benchmark with other
RL techniques, we reproduce them by following the provided
experiment parameters and closely matching the perfor-
mance. Specifically, to obtain RL policy with only local
observations, we follow Wu et al. [43] and refer the policy as
Wu hereafter; Our reproduced Wu achieves the performance
within 1% error (measured with stabilization time and aver-
age velocity during stabilization) of the original work.

E. Perturbations Via Imitation Learning and Sampling

To ensure an accurate reproduction of real-world driving
behaviors and perturbations in the simulation, we adopt a hy-



Fig. 4: Average velocity profile of RL-based approaches at 5% penetration under long-term application of real-world perturbations (for
30 minutes from 1000 s to 2800 s), averaged over 10 simulation rollouts. The solid lines indicate average velocity and colored ranges
indicate standard deviation across rollouts. During the application of perturbations, Our efficiency RV has the highest average velocity at
3.95 m/s contributing to more throughput whereas Wu has the highest standard deviation at 1.35 m/s, indicating more sensitivity.

brid technique combining imitation learning and probabilistic
sampling. We extract relevant real-world HV data during car-
following such as ego velocity, headway distance, and leader
velocity corresponding to the instantaneous accelerations
shown in Fig. 1 TOP. We then train a behavioral cloning
model represented by an 801-parameter neural network with
these variables as input, acceleration command as predicted
output, and real-world accelerations as expert demonstra-
tions. The model minimizes the following objective:

MSE =
1

N

N∑
i=1

(ai − âi)
2

where N is the number of samples, ai is the real-world
acceleration, and âi is the predicted acceleration. To inject
acceleration perturbations to HVs in simulation, we charac-
terize the discrete acceleration behaviors extracted from the
dataset in terms of intensity, frequency, and duration. Upon
analysis, we find a negative correlation of intensity with
frequency and durations i.e., higher intensity accelerations
tend to have shorter duration and occur less frequently. Then,
we uniformly sample the frequency of the perturbations
within the observed range of [10, 30] per HV, for every 6
minutes of car-following. The intensity of the acceleration
perturbations is determined based on the space headway
of the HV. When the space headway is less than 5 m,
human driving behavior becomes more sensitive, as the
consequences of accelerations are more significant at shorter
distances; hence, the accelerations are obtained from the
imitation learning model to better capture the nuances of
human driving. whereas if the we space headway is greater
than 5 m, we sample acceleration intensity uniformly within
[−3, 3] m/s2. To determine the duration (τai

) of each
selected intensity ai, we first find the most common duration
(mode) τ̃ai

by linearly mapping ai within the minimum
(τmin) and maximum (τmax) observed durations. We then
sample τai from a piecewise triangular distribution using the
following conditional probability density function:

P (τai |τ̃ai) =


2(τai

−τmin)

τrange(τ̃ai
−τmin) , τmin ≤ τai

< τ̃ai
,

2(τmax−τai
)

τrange(τmax−τ̃ai
) , τ̃ai

≤ τai
≤ τmax.

where τrange = τmax − τmin. The sampled acceleration pertur-
bation is randomly assigned to HVs during experiments.

Category Parameter Value

Time Step (∆t) 0.1
Simulation Horizon (T ) 4500

Simulation Warmup Time-steps 2500
Speed Limit (m/s) 30
Initial Speed (m/s) 0

PPO

Learning Rate (α) 0.00005
Discount Factor (γ) 0.999
GAE Estimation (λ) 0.97
KL Divergence Target 0.02

Algorithm Entropy Coefficient Initial 0.1
Entropy Coefficient Final 0.01
Value Function Clip Param 20
SGD Iterations 2

Congestion
Neural Network 32, 16, 16
Batch Size 32

Classifier Learning Rate 0.01
Epochs 50

Policy
Our Leader RV 64, 32, 16
Our Follower RV 64, 32, 16

Networks Wu 32, 32, 32

TABLE I: Detailed experiment parameters. We show the simu-
lation parameters as well as the parameters of Proximal Policy
Optimization (PPO) and the congestion classifier. The hidden layer
dimensions of various policy networks are also shown.

III. EXPERIMENTS

We introduce the mixed traffic environment, the evaluation
metrics, the experimental setup, and finally the results. To
begin with, we test on the mixed traffic environment, the
Ring: a single-lane circular road network with 22 vehicles
as shown in Table II. This classical scene simulates ‘stop-
and-go traffic’ where repeated cycles of accelerations and
decelerations occur in HVs even in the absence of external
disturbances. For our evaluations, we measure safety using
surrogate measures associated with near-crash events, includ-
ing Time to Collision (TTC ↑) [44] to indicate collision risk
and Deceleration Rate to Avoid a Crash (DRAC ↓) [45] to
quantify necessary braking force to avoid a collision. For



RV% RV Type
Safety Efficiency

TTC DRAC FE Throughput
IDM* 1.82 ± 0.23 1.62 ± 0.56 7.63 ± 0.23 988 ± 9.80

FS 3.99 ± 0.77 0.89 ± 0.27 12.34 ± 0.54 1283 ± 42.44

PIwS 1.95 ± 1.57 1.89 ± 0.88 12.99 ± 0.57 1343 ± 62.62

BCM 1.03 ± 0.00 2.82 ± 0.10 8.17 ± 0.19 1023 ± 14.87

LACC 1.09 ± 0.01 1.42 ± 0.03 8.01 ± 0.12 1031 ± 15.13

Wu 2.39 ± 0.42 1.23 ± 0.39 9.92 ± 0.66 1048 ± 82.19

Ours 7.95 ± 2.29 0.36 ± 0.10 12.8 ± 0.72 1242 ± 51.34

FS 4.22 ± 0.55 0.74 ± 0.26 12.08 ± 0.61 1344 ± 29.39

PIwS 1.71 ± 0.18 1.48 ± 0.42 11.76 ± 0.51 1328 ± 51.73

BCM 2.21 ± 1.40 0.75 ± 0.30 13.19 ± 0.36 1392 ± 18.87

LACC 1.08 ± 0.04 1.73 ± 0.09 9.42 ± 0.32 1166 ± 20.59

Wu 2.24 ± 0.3 1.27 ± 0.24 6.41 ± 0.17 791 ± 62.52

Ours 5.84 ± 2.96 0.59 ± 0.28 12.87 ± 0.64 1336 ± 60.03

FS 3.53 ± 1.30 1.02 ± 0.60 11.55 ± 0.56 1323 ± 69.43

PIwS 1.58 ± 0.16 1.89 ± 0.32 11.09 ± 0.54 1294 ± 65.91

BCM 4.35 ± 6.61 0.7 ± 0.36 11.96 ± 0.42 1400 ± 10.95

LACC 3.14 ± 2.34 0.90 ± 0.74 14.39 ± 0.40 1426 ± 30.07

Wu 2.18 ± 0.43 1.27 ± 0.40 3.66 ± 0.16 456 ± 244.71

Ours 4.22 ± 2.08 0.89 ± 0.52 14.06 ± 0.45 1430 ± 75.63

FS 2.39 ± 0.64 1.00 ± 0.05 9.99 ± 0.55 1124 ± 170.60

PIwS 1.59 ± 0.30 1.94 ± 0.53 10.70 ± 0.54 1264 ± 44.99

BCM 2.29 ± 1.12 0.97 ± 0.67 11.79 ± 0.49 1393 ± 6.40

LACC 2.55 ± 1.26 1.47 ± 1.42 13.91 ± 0.55 1448 ± 9.80

Wu 2.83 ± 1.46 1.17 ± 0.42 4.41 ± 0.10 556 ± 240.38

Ours 6.58 ± 2.47 0.57 ± 0.27 13.61 ± 0.54 1473 ± 30.02

TABLE II: Evaluation of RVs at various penetrations (RV/s are shown in red, observed human vehicles (HVs) are shown in cyan, and
remaining HVs are white) averaged over 10 random rollouts with values after ± indicating standard deviation. IDM* denotes the 100% HV
baseline, Ours highlighted in bold with results of the efficiency and safety RVs shown Safety and Efficiency columns respectively. Across
all penetrations, our safety RV outperforms other methods in safety, exceeding the critical 4 s TTC threshold and reducing DRAC by up
to 80% compared to IDM, with the exception of 40% penetration where it achieves the second-best performance in DRAC. Our efficiency
RV improves the throughput by up to 49% (at 60% penetration) compared to IDM, while consistently maintaining the second-highest
fuel economy among all evaluated RVs, with improvement of up to 84% at 40% penetration.

efficiency, Fuel Economy (FE ↑) measures the miles driven
per gallon of fuel consumed using the Handbook Emission
Factors for Road Transport 3 Euro 4 passenger car emission
model [46], while Throughput (↑) indicates network capacity
utilization (flow rate).

For experiment setup, we use FLOW [43] and SUMO [19]
with RVs platooned when penetration rate is > 5% (all
evaluated RVs can stabilize traffic in a platoon configuration,
BCM and LACC require minimum 20% and 40% penetration
respectively [27]). We select penetration rates 5%, 20%,
40%, and 60% to align with the minimum rates required
for stabilizing traffic by different RVs [27], [47]. We adhere
to stringent safety standards in our evaluations of TTC,
DRAC hence when multiple RVs are present, we report the
worst-case values among the RVs (including IDM baseline
where the worst case among all vehicles in considered). In
contrast, to measure efficiency we consider all vehicles in the
network. In each experiment, we first allow the RV enough
time to stabilize traffic and then we introduce acceleration
perturbations for six-minute equivalent of real-world time.

Fig. 4 shows the velocity profiles of RL-based approaches
in our study, namely Wu, Our efficiency RV, and Our safety
RV at 5% penetration. All vehicles in the network are
controlled using IDM during the initial 400 s of warmup time
before the activation of RVs. After activation, Wu stabilizes
traffic at 640 s, Our efficiency RV stabilizes traffic faster

than Wu at 595 s whereas Our safety RV stabilizes traffic
gradually at 890 s . During stabilization, Wu maintains
a higher average velocity of 4.88 m/s compared to Our
efficiency RV at 4.37 m/s, while our safety RV has the
lowest average velocity at 3.48 m/s. However, when per-
turbations are applied to HVs between 1000 s and 2800 s,
Our efficiency RV maintains a higher average velocity at
3.95 m/s compared to Wu at 3.35 m/s while Our safety
RV at 3.31 m/s has comparable average velocity to Wu.
Notably, between 1000 s and 2800 s, Wu has the highest
standard deviation of 1.35 m/s compared to Our efficiency
RV at 0.80 m/s and Our safety RV at 0.70 m/s, indicating
more sensitivity to applied perturbations.

Table II presents comparative evaluation of various RVs in
the Ring at 85 veh/km density. Across all penetration rates,
our safety RV consistently outperforms other methods in
terms of TTC. Importantly, only our RV manages to exceed
the critical 4 s threshold for TTC at all penetration rates,
a threshold that is often used to activate automatic collision
avoidance systems or warn drivers [48] and has alse been rec-
ommended by earlier studies [44], [49]. Additionally, DRAC
is reduced by up to 80% (at 5% penetration) in comparison
to IDM and Our safety RV delivers the lowest DRAC at
all penetrations except at 40%. Similarly, Our efficiency RV
achieves the highest throughput at higher penetration rates



(improvements of 44% and 49% at penetration rates 40%
and 60% respectively, compared to IDM). Furthermore, Our
efficiency RV improves fuel economy up to 84% (at 60%
penetration) and is consistently the second highest among
all other RVs at all penetration rates.

IV. CONCLUSION AND FUTURE WORK

In this work, we combine imitation learning and proba-
bilistic sampling to address the Sim2Real gap in modeling
human driving behavior for mixed traffic control. Further,
we propose a novel approach for optimizing safety and
efficiency in mixed traffic using reinforcement learning-based
robot vehicles (RVs) by introducing CARL with two classes
of RVs: safety RV and efficiency RV, both leveraging a
classifier to predict congestion stage in advance. Through
extensive experiments in the Ring with injected real-world
perturbations, we demonstrate that our RV is able to increase
the time to collision (TTC) above the critical 4 s threshold,
reduce the deceleration rate to avoid a crash (DRAC) by
up to 80%, and increase throughput up to 49%. CARL is
practical for real-world deployment as it relies on sensors
like LiDAR which have a fixed maximum sensing range.
However, additional experiments involving real hardware are
needed to fully validate its scalability and robustness.

There are also potential ethical implications regarding the
safety and privacy of human drivers interacting with RVs de-
ployed in mixed traffic that merit further investigation. CARL
inherently addresses the privacy issues as our approach
prioritizes privacy by design. During the interaction between
human drivers and RVs, our sensing relies on position and
velocity, and does not collect sensitive information related
to human drivers that could be traced back to their identity.
However, a dedicated effort to investigate privacy concerns
is crucial to ensure that data collected by RVs is anonymized
and used responsibly.

In future work, we plan to incorporate additional traffic
dynamics such as lane-changing and heterogeneous vehicle
types. We also aim to conduct generalization studies in more
complex environments like intersections [50]. Additionally,
we plan to perform control and coordination at a city-wide
scale by relying on network-wide traffic state prediction and
evaluate the robustness of such approaches [51]. Similarly,
applying our approach on real hardware, including micro-
mobility vehicles [52], is also an interesting future direction.
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[14] Nathan Lichtlé, Eugene Vinitsky, Matthew Nice, Benjamin Seibold,
Dan Work, and Alexandre M Bayen. Deploying traffic smoothing
cruise controllers learned from trajectory data. In 2022 International
Conference on Robotics and Automation (ICRA), pages 2884–2890.
IEEE, 2022.

[15] Peter G Gipps. A behavioural car-following model for computer sim-
ulation. Transportation research part B: methodological, 15(2):105–
111, 1981.

[16] Stefan Krauß. Microscopic modeling of traffic flow: Investigation of
collision free vehicle dynamics. 1998.

[17] Martin Treiber and Arne Kesting. Traffic flow dynamics. Traffic
Flow Dynamics: Data, Models and Simulation, Springer-Verlag Berlin
Heidelberg, pages 983–1000, 2013.

[18] Saleh Albeaik, Alexandre Bayen, Maria Teresa Chiri, Xiaoqian Gong,
Amaury Hayat, Nicolas Kardous, Alexander Keimer, Sean T Mc-
Quade, Benedetto Piccoli, and Yiling You. Limitations and improve-
ments of the intelligent driver model (idm). SIAM Journal on Applied
Dynamical Systems, 21(3):1862–1892, 2022.

[19] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob
Erdmann, Yun-Pang Flötteröd, Robert Hilbrich, Leonhard Lücken,
Johannes Rummel, Peter Wagner, and Evamarie Wießner. Microscopic
traffic simulation using sumo. In 2018 21st international conference
on intelligent transportation systems (ITSC), pages 2575–2582. IEEE,
2018.

[20] Martin Treiber and Arne Kesting. The intelligent driver model with
stochasticity-new insights into traffic flow oscillations. Transportation
research procedia, 23:174–187, 2017.

[21] Arne Kesting and Martin Treiber. Calibrating car-following models by
using trajectory data: Methodological study. Transportation Research
Record, 2088(1):148–156, 2008.

[22] Li Li, Xiqun Micheal Chen, and Lei Zhang. A global optimization
algorithm for trajectory data based car-following model calibration.
Transportation Research Part C: Emerging Technologies, 68:311–332,
2016.

[23] MN Sharath and Nagendra R Velaga. Enhanced intelligent driver
model for two-dimensional motion planning in mixed traffic. Trans-
portation Research Part C: Emerging Technologies, 120:102780, 2020.

[24] Meixin Zhu, Xuesong Wang, Andrew Tarko, et al. Modeling car-
following behavior on urban expressways in shanghai: A naturalistic



driving study. Transportation research part C: emerging technologies,
93:425–445, 2018.

[25] Cathy Wu, Aboudy Kreidieh, Kanaad Parvate, Eugene Vinitsky, and
Alexandre M Bayen. Flow: Architecture and benchmarking for rein-
forcement learning in traffic control. arXiv preprint arXiv:1710.05465,
10, 2017.

[26] Abdul Rahman Kreidieh, Cathy Wu, and Alexandre M Bayen. Dis-
sipating stop-and-go waves in closed and open networks via deep
reinforcement learning. In 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), pages 1475–1480. IEEE,
2018.

[27] Fang-Chieh Chou, Alben Rome Bagabaldo, and Alexandre M Bayen.
The lord of the ring road: a review and evaluation of autonomous
control policies for traffic in a ring road. ACM Transactions on Cyber-
Physical Systems (TCPS), 6(1):1–25, 2022.

[28] Eugene Vinitsky, Aboudy Kreidieh, Luc Le Flem, Nishant Kheterpal,
Kathy Jang, Cathy Wu, Fangyu Wu, Richard Liaw, Eric Liang, and
Alexandre M Bayen. Benchmarks for reinforcement learning in mixed-
autonomy traffic. In Conference on robot learning, pages 399–409.
PMLR, 2018.

[29] Mayuri Sridhar and Cathy Wu. Piecewise constant policies for
human-compatible congestion mitigation. In 2021 IEEE International
Intelligent Transportation Systems Conference (ITSC), pages 2499–
2505. IEEE, 2021.

[30] Xiao Wang, Rui Jiang, Li Li, Yilun Lin, Xinhu Zheng, and Fei-Yue
Wang. Capturing car-following behaviors by deep learning. IEEE
Transactions on Intelligent Transportation Systems, 19(3):910–920,
2017.

[31] Meixin Zhu, Yinhai Wang, Ziyuan Pu, Jingyun Hu, Xuesong Wang,
and Ruimin Ke. Safe, efficient, and comfortable velocity control based
on reinforcement learning for autonomous driving. Transportation
Research Part C: Emerging Technologies, 117:102662, 2020.

[32] Meixin Zhu, Xuesong Wang, and Yinhai Wang. Human-like au-
tonomous car-following model with deep reinforcement learning.
Transportation research part C: emerging technologies, 97:348–368,
2018.

[33] Tianyu Shi, Yifei Ai, Omar ElSamadisy, and Baher Abdulhai. Bilat-
eral deep reinforcement learning approach for better-than-human car
following model. arXiv preprint arXiv:2203.04749, 2022.

[34] Raunak Bhattacharyya, Blake Wulfe, Derek J Phillips, Alex Kuefler,
Jeremy Morton, Ransalu Senanayake, and Mykel J Kochenderfer.
Modeling human driving behavior through generative adversarial
imitation learning. IEEE Transactions on Intelligent Transportation
Systems, 24(3):2874–2887, 2022.

[35] Tianya Zhang, Peter J Jin, Sean T McQuade, and Benedetto Piccoli.
Car-following models: A multidisciplinary review. arXiv preprint
arXiv:2304.07143, 2023.

[36] Luc Le Mero, Dewei Yi, Mehrdad Dianati, and Alexandros Mouza-
kitis. A survey on imitation learning techniques for end-to-end
autonomous vehicles. IEEE Transactions on Intelligent Transportation
Systems, 23(9):14128–14147, 2022.

[37] Derek Gloudemans, Yanbing Wang, Junyi Ji, Gergely Zachar, William
Barbour, Eric Hall, Meredith Cebelak, Lee Smith, and Daniel B Work.
I-24 motion: An instrument for freeway traffic science. Transportation
Research Part C: Emerging Technologies, 155:104311, 2023.

[38] Raphael E Stern, Shumo Cui, Maria Laura Delle Monache, Rahul
Bhadani, Matt Bunting, Miles Churchill, Nathaniel Hamilton, Hannah
Pohlmann, Fangyu Wu, Benedetto Piccoli, et al. Dissipation of stop-
and-go waves via control of autonomous vehicles: Field experiments.
Transportation Research Part C: Emerging Technologies, 89:205–221,
2018.

[39] Berthold KP Horn. Suppressing traffic flow instabilities. In 16th
International IEEE Conference on Intelligent Transportation Systems
(ITSC 2013), pages 13–20. IEEE, 2013.

[40] Rajesh Rajamani. Vehicle dynamics and control. Springer Science &
Business Media, 2011.

[41] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[42] Hwasoo Yeo. Asymmetric microscopic driving behavior theory.
University of California, Berkeley, 2008.

[43] Cathy Wu, Abdul Rahman Kreidieh, Kanaad Parvate, Eugene Vinitsky,
and Alexandre M Bayen. Flow: A modular learning framework for
mixed autonomy traffic. IEEE Transactions on Robotics, 38(2):1270–
1286, 2021.

[44] Katja Vogel. A comparison of headway and time to collision as safety
indicators. Accident analysis & prevention, 35(3):427–433, 2003.

[45] Dale F Cooper and N Ferguson. Traffic studies at t-junctions. 2. a con-
flict simulation record. Traffic Engineering & Control, 17(Analytic),
1976.

[46] Peter De Haan and Mario Keller. Modelling fuel consumption
and pollutant emissions based on real-world driving patterns: the
hbefa approach. International journal of environment and pollution,
22(3):240–258, 2004.

[47] Bibek Poudel, Kevin Heaslip, and Weizi Li. Endurl: Enhancing safety,
stability, and efficiency of mixed traffic under real-world perturbations
via reinforcement learning. arXiv preprint arXiv:2311.12261, 2023.

[48] Michiel M Minderhoud and Piet HL Bovy. Extended time-to-collision
measures for road traffic safety assessment. Accident Analysis &
Prevention, 33(1):89–97, 2001.

[49] TJ Ayres, L Li, David Schleuning, and D Young. Preferred time-
headway of highway drivers. In ITSC 2001. 2001 IEEE Intelligent
Transportation Systems. Proceedings (Cat. No. 01TH8585), pages
826–829. IEEE, 2001.

[50] Dawei Wang, Weizi Li, Lei Zhu, and Jia Pan. Learning to control
and coordinate mixed traffic through robot vehicles at complex and
unsignalized intersections. arXiv preprint arXiv:2301.05294, 2023.

[51] Bibek Poudel and Weizi Li. Black-box adversarial attacks on network-
wide multi-step traffic state prediction models. In 2021 IEEE Inter-
national Intelligent Transportation Systems Conference (ITSC), pages
3652–3658. IEEE, 2021.

[52] Bibek Poudel, Thomas Watson, and Weizi Li. Learning to control dc
motor for micromobility in real time with reinforcement learning. In
2022 IEEE 25th International Conference on Intelligent Transporta-
tion Systems (ITSC), pages 1248–1254. IEEE, 2022.


	Introduction
	Methodology
	Data Processing and Intelligent Driver Model (IDM)
	Heuristic-based Robot Vehicles
	Model-based Robot Vehicles
	RL-based Robot Vehicles
	Congestion Classifier
	Benchmarking RL Policies

	Perturbations Via Imitation Learning and Sampling

	Experiments
	Conclusion and Future Work
	References

